Starting my own ANN implementation.

This commit is contained in:
2012-11-23 14:08:14 -05:00
parent 2e36b01363
commit 874847f41b
25 changed files with 695 additions and 898 deletions

View File

@@ -5,6 +5,7 @@ import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import org.encog.ml.data.MLData;
import org.encog.neural.networks.BasicNetwork;
import org.encog.neural.networks.PersistBasicNetwork;
@@ -13,6 +14,11 @@ public abstract class AbstractNeuralNetFilter implements NeuralNetFilter {
protected int actualTrainingEpochs = 0;
protected int maxTrainingEpochs = 1000;
@Override
public MLData compute(MLData input) {
return this.neuralNetwork.compute(input);
}
public int getActualTrainingEpochs() {
return actualTrainingEpochs;
}

View File

@@ -1,95 +0,0 @@
package net.woodyfolsom.msproj.ann;
import org.encog.mathutil.error.ErrorCalculationMode;
/*
Initial erison of this class was a verbatim copy from Encog framework.
*/
public class ErrorCalculation {
private static ErrorCalculationMode mode = ErrorCalculationMode.MSE;
public static ErrorCalculationMode getMode() {
return ErrorCalculation.mode;
}
public static void setMode(final ErrorCalculationMode theMode) {
ErrorCalculation.mode = theMode;
}
private double globalError;
private int setSize;
public final double calculate() {
if (this.setSize == 0) {
return 0;
}
switch (ErrorCalculation.getMode()) {
case RMS:
return calculateRMS();
case MSE:
return calculateMSE();
case ESS:
return calculateESS();
default:
return calculateMSE();
}
}
public final double calculateMSE() {
if (this.setSize == 0) {
return 0;
}
final double err = this.globalError / this.setSize;
return err;
}
public final double calculateESS() {
if (this.setSize == 0) {
return 0;
}
final double err = this.globalError / 2;
return err;
}
public final double calculateRMS() {
if (this.setSize == 0) {
return 0;
}
final double err = Math.sqrt(this.globalError / this.setSize);
return err;
}
public final void reset() {
this.globalError = 0;
this.setSize = 0;
}
public final void updateError(final double actual, final double ideal) {
double delta = ideal - actual;
this.globalError += delta * delta;
this.setSize++;
}
public final void updateError(final double[] actual, final double[] ideal,
final double significance) {
for (int i = 0; i < actual.length; i++) {
double delta = (ideal[i] - actual[i]) * significance;
this.globalError += delta * delta;
}
this.setSize += ideal.length;
}
}

View File

@@ -1,25 +0,0 @@
package net.woodyfolsom.msproj.ann;
import net.woodyfolsom.msproj.GameState;
import org.encog.ml.data.basic.BasicMLData;
public class GameStateMLData extends BasicMLData {
/**
*
*/
private static final long serialVersionUID = 1L;
private GameState gameState;
public GameStateMLData(double[] d, GameState gameState) {
super(d);
// TODO Auto-generated constructor stub
this.gameState = gameState;
}
public GameState getGameState() {
return gameState;
}
}

View File

@@ -11,16 +11,12 @@ import org.encog.ml.data.basic.BasicMLDataPair;
import org.encog.util.kmeans.Centroid;
public class GameStateMLDataPair implements MLDataPair {
//private final String[] inputs = { "BlackScore", "WhiteScore" };
//private final String[] outputs = { "BlackWins", "WhiteWins" };
private BasicMLDataPair mlDataPairDelegate;
private GameState gameState;
public GameStateMLDataPair(GameState gameState) {
this.gameState = gameState;
mlDataPairDelegate = new BasicMLDataPair(
new GameStateMLData(createInput(), gameState), new BasicMLData(createIdeal()));
mlDataPairDelegate = new BasicMLDataPair(new BasicMLData(createInput()), new BasicMLData(createIdeal()));
}
public GameStateMLDataPair(GameStateMLDataPair that) {
@@ -118,4 +114,4 @@ public class GameStateMLDataPair implements MLDataPair {
mlDataPairDelegate.setSignificance(arg0);
}
}
}

View File

@@ -1,193 +0,0 @@
package net.woodyfolsom.msproj.ann;
/*
* Class copied verbatim from Encog framework due to dependency on Propagation
* implementation.
*
* Encog(tm) Core v3.2 - Java Version
* http://www.heatonresearch.com/encog/
* http://code.google.com/p/encog-java/
* Copyright 2008-2012 Heaton Research, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* For more information on Heaton Research copyrights, licenses
* and trademarks visit:
* http://www.heatonresearch.com/copyright
*/
import java.util.ArrayList;
import java.util.List;
import java.util.Set;
import org.encog.engine.network.activation.ActivationFunction;
import org.encog.ml.data.MLDataPair;
import org.encog.ml.data.basic.BasicMLDataPair;
import org.encog.neural.error.ErrorFunction;
import org.encog.neural.flat.FlatNetwork;
import org.encog.util.EngineArray;
import org.encog.util.concurrency.EngineTask;
public class GradientWorker implements EngineTask {
private final FlatNetwork network;
private final ErrorCalculation errorCalculation = new ErrorCalculation();
private final List<double[]> actuals;
private final double[] layerDelta;
private final int[] layerCounts;
private final int[] layerFeedCounts;
private final int[] layerIndex;
private final int[] weightIndex;
private final double[] layerOutput;
private final double[] layerSums;
private final double[] gradients;
private final double[] weights;
private final MLDataPair pairPrototype;
private final Set<List<MLDataPair>> training;
//private final int low;
//private final int high;
private final TemporalDifferenceLearning owner;
private double[] flatSpot;
private final ErrorFunction errorFunction;
public GradientWorker(final FlatNetwork theNetwork,
final TemporalDifferenceLearning theOwner,
final Set<List<MLDataPair>> theTraining, final int theLow,
final int theHigh, final double[] flatSpot, ErrorFunction ef) {
this.network = theNetwork;
this.training = theTraining;
//this.low = theLow;
//this.high = theHigh;
this.owner = theOwner;
this.flatSpot = flatSpot;
this.errorFunction = ef;
this.layerDelta = new double[network.getLayerOutput().length];
this.gradients = new double[network.getWeights().length];
this.actuals = new ArrayList<double[]>();
this.weights = network.getWeights();
this.layerIndex = network.getLayerIndex();
this.layerCounts = network.getLayerCounts();
this.weightIndex = network.getWeightIndex();
this.layerOutput = network.getLayerOutput();
this.layerSums = network.getLayerSums();
this.layerFeedCounts = network.getLayerFeedCounts();
this.pairPrototype = BasicMLDataPair.createPair(
network.getInputCount(), network.getOutputCount());
}
public FlatNetwork getNetwork() {
return this.network;
}
public double[] getWeights() {
return this.weights;
}
private void process(List<MLDataPair> trainingSequence) {
actuals.clear();
for (int trainingIdx = 0; trainingIdx < trainingSequence.size(); trainingIdx++) {
MLDataPair mlDataPair = trainingSequence.get(trainingIdx);
MLDataPair dataPairCopy = this.pairPrototype;
dataPairCopy.setInputArray(mlDataPair.getInputArray());
if (dataPairCopy.getIdealArray() != null) {
dataPairCopy.setIdealArray(mlDataPair.getIdealArray());
}
double[] input = dataPairCopy.getInputArray();
double[] ideal = dataPairCopy.getIdealArray();
double significance = dataPairCopy.getSignificance();
actuals.add(trainingIdx, new double[ideal.length]);
this.network.compute(input, actuals.get(trainingIdx));
// For now, only calculate deltas for the final data pair
// For final TDL algorithm, deltas won't be used at all, instead the
// List of Actual vectors will.
if (trainingIdx < trainingSequence.size() - 1) {
continue;
}
this.errorCalculation.updateError(actuals.get(trainingIdx), ideal,
significance);
this.errorFunction.calculateError(ideal, actuals.get(trainingIdx),
this.layerDelta);
for (int i = 0; i < actuals.get(trainingIdx).length; i++) {
this.layerDelta[i] = ((this.network.getActivationFunctions()[0]
.derivativeFunction(this.layerSums[i],
this.layerOutput[i]) + this.flatSpot[0]))
* (this.layerDelta[i] * significance);
}
for (int i = this.network.getBeginTraining(); i < this.network
.getEndTraining(); i++) {
processLevel(i);
}
}
}
private void processLevel(final int currentLevel) {
final int fromLayerIndex = this.layerIndex[currentLevel + 1];
final int toLayerIndex = this.layerIndex[currentLevel];
final int fromLayerSize = this.layerCounts[currentLevel + 1];
final int toLayerSize = this.layerFeedCounts[currentLevel];
final int index = this.weightIndex[currentLevel];
final ActivationFunction activation = this.network
.getActivationFunctions()[currentLevel];
final double currentFlatSpot = this.flatSpot[currentLevel + 1];
// handle weights
int yi = fromLayerIndex;
for (int y = 0; y < fromLayerSize; y++) {
final double output = this.layerOutput[yi];
double sum = 0;
int xi = toLayerIndex;
int wi = index + y;
for (int x = 0; x < toLayerSize; x++) {
this.gradients[wi] += output * this.layerDelta[xi];
sum += this.weights[wi] * this.layerDelta[xi];
wi += fromLayerSize;
xi++;
}
this.layerDelta[yi] = sum
* (activation.derivativeFunction(this.layerSums[yi],
this.layerOutput[yi]) + currentFlatSpot);
yi++;
}
}
public final void run() {
try {
this.errorCalculation.reset();
for (List<MLDataPair> trainingSequence : training) {
process(trainingSequence);
}
final double error = this.errorCalculation.calculate();
this.owner.report(this.gradients, error, null);
EngineArray.fill(this.gradients, 0);
} catch (final Throwable ex) {
this.owner.report(null, 0, ex);
}
}
}

View File

@@ -11,21 +11,20 @@ import org.encog.neural.networks.BasicNetwork;
public interface NeuralNetFilter {
BasicNetwork getNeuralNetwork();
int getActualTrainingEpochs();
int getInputSize();
int getMaxTrainingEpochs();
int getOutputSize();
void learn(MLDataSet trainingSet);
void learn(Set<List<MLDataPair>> trainingSet);
void load(String fileName) throws IOException;
void reset();
void reset(int seed);
void save(String fileName) throws IOException;
void setMaxTrainingEpochs(int max);
public int getActualTrainingEpochs();
public int getInputSize();
public int getMaxTrainingEpochs();
public int getOutputSize();
public double computeValue(MLData input);
public double[] computeVector(MLData input);
public void learn(MLDataSet trainingSet);
public void learn(Set<List<MLDataPair>> trainingSet);
public void load(String fileName) throws IOException;
public void reset();
public void reset(int seed);
public void save(String fileName) throws IOException;
public void setMaxTrainingEpochs(int max);
MLData compute(MLData input);
}

View File

@@ -0,0 +1,30 @@
package net.woodyfolsom.msproj.ann;
import org.encog.ml.data.MLDataSet;
import org.encog.neural.networks.ContainsFlat;
import org.encog.neural.networks.training.propagation.back.Backpropagation;
public class TemporalDifference extends Backpropagation {
private final double lambda;
public TemporalDifference(ContainsFlat network, MLDataSet training,
double theLearnRate, double theMomentum, double lambda) {
super(network, training, theLearnRate, theMomentum);
this.lambda = lambda;
}
public double getLamdba() {
return lambda;
}
@Override
public double updateWeight(final double[] gradients,
final double[] lastGradient, final int index) {
double alpha = this.getLearningRate();
//TODO fill in weight update for TD(lambda)
return 0.0;
}
}

View File

@@ -1,487 +0,0 @@
package net.woodyfolsom.msproj.ann;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import org.encog.EncogError;
import org.encog.engine.network.activation.ActivationFunction;
import org.encog.engine.network.activation.ActivationSigmoid;
import org.encog.mathutil.IntRange;
import org.encog.ml.MLMethod;
import org.encog.ml.TrainingImplementationType;
import org.encog.ml.data.MLDataPair;
import org.encog.ml.data.MLDataSet;
import org.encog.ml.train.MLTrain;
import org.encog.ml.train.strategy.Strategy;
import org.encog.ml.train.strategy.end.EndTrainingStrategy;
import org.encog.neural.error.ErrorFunction;
import org.encog.neural.error.LinearErrorFunction;
import org.encog.neural.flat.FlatNetwork;
import org.encog.neural.networks.ContainsFlat;
import org.encog.neural.networks.training.LearningRate;
import org.encog.neural.networks.training.Momentum;
import org.encog.neural.networks.training.Train;
import org.encog.neural.networks.training.TrainingError;
import org.encog.neural.networks.training.propagation.TrainingContinuation;
import org.encog.neural.networks.training.propagation.back.Backpropagation;
import org.encog.neural.networks.training.strategy.SmartLearningRate;
import org.encog.neural.networks.training.strategy.SmartMomentum;
import org.encog.util.EncogValidate;
import org.encog.util.EngineArray;
import org.encog.util.concurrency.DetermineWorkload;
import org.encog.util.concurrency.EngineConcurrency;
import org.encog.util.concurrency.MultiThreadable;
import org.encog.util.concurrency.TaskGroup;
import org.encog.util.logging.EncogLogging;
/**
* This class started as a verbatim copy of BackPropagation from the open-source
* Encog framework. It was merged with its super-classes to access protected
* fields without resorting to reflection.
*/
public class TemporalDifferenceLearning implements MLTrain, Momentum,
LearningRate, Train, MultiThreadable {
// New fields for TD(lambda)
private final double lambda;
// end new fields
// BackProp
public static final String LAST_DELTA = "LAST_DELTA";
private double learningRate;
private double momentum;
private double[] lastDelta;
// End BackProp
// Propagation
private FlatNetwork currentFlatNetwork;
private int numThreads;
protected double[] gradients;
private double[] lastGradient;
protected ContainsFlat network;
// private MLDataSet indexable;
private Set<List<MLDataPair>> indexable;
private GradientWorker[] workers;
private double totalError;
protected double lastError;
private Throwable reportedException;
private double[] flatSpot;
private boolean shouldFixFlatSpot;
private ErrorFunction ef = new LinearErrorFunction();
// End Propagation
// BasicTraining
private final List<Strategy> strategies = new ArrayList<Strategy>();
//private Set<List<MLDataPair>> training;
private double error;
private int iteration;
private TrainingImplementationType implementationType;
// End BasicTraining
public TemporalDifferenceLearning(final ContainsFlat network,
final Set<List<MLDataPair>> training, double lambda) {
this(network, training, 0, 0, lambda);
addStrategy(new SmartLearningRate());
addStrategy(new SmartMomentum());
}
public TemporalDifferenceLearning(final ContainsFlat network,
Set<List<MLDataPair>> training, final double theLearnRate,
final double theMomentum, double lambda) {
initPropagation(network, training);
// TODO consider how to re-implement validation
// ValidateNetwork.validateMethodToData(network, training);
this.momentum = theMomentum;
this.learningRate = theLearnRate;
this.lastDelta = new double[network.getFlat().getWeights().length];
this.lambda = lambda;
}
private void initPropagation(final ContainsFlat network,
final Set<List<MLDataPair>> training) {
initBasicTraining(TrainingImplementationType.Iterative);
this.network = network;
this.currentFlatNetwork = network.getFlat();
//setTraining(training);
this.gradients = new double[this.currentFlatNetwork.getWeights().length];
this.lastGradient = new double[this.currentFlatNetwork.getWeights().length];
this.indexable = training;
this.numThreads = 0;
this.reportedException = null;
this.shouldFixFlatSpot = true;
}
private void initBasicTraining(TrainingImplementationType implementationType) {
this.implementationType = implementationType;
}
// Methods from BackPropagation
@Override
public boolean canContinue() {
return false;
}
public double[] getLastDelta() {
return this.lastDelta;
}
@Override
public double getLearningRate() {
return this.learningRate;
}
@Override
public double getMomentum() {
return this.momentum;
}
public boolean isValidResume(final TrainingContinuation state) {
if (!state.getContents().containsKey(Backpropagation.LAST_DELTA)) {
return false;
}
if (!state.getTrainingType().equals(getClass().getSimpleName())) {
return false;
}
final double[] d = (double[]) state.get(Backpropagation.LAST_DELTA);
return d.length == ((ContainsFlat) getMethod()).getFlat().getWeights().length;
}
@Override
public TrainingContinuation pause() {
final TrainingContinuation result = new TrainingContinuation();
result.setTrainingType(this.getClass().getSimpleName());
result.set(Backpropagation.LAST_DELTA, this.lastDelta);
return result;
}
@Override
public void resume(final TrainingContinuation state) {
if (!isValidResume(state)) {
throw new TrainingError("Invalid training resume data length");
}
this.lastDelta = ((double[]) state.get(Backpropagation.LAST_DELTA));
}
@Override
public void setLearningRate(final double rate) {
this.learningRate = rate;
}
@Override
public void setMomentum(final double m) {
this.momentum = m;
}
public double updateWeight(final double[] gradients,
final double[] lastGradient, final int index) {
final double delta = (gradients[index] * this.learningRate)
+ (this.lastDelta[index] * this.momentum);
this.lastDelta[index] = delta;
System.out.println("Updating weights for connection: " + index
+ " with lambda: " + lambda);
return delta;
}
public void initOthers() {
}
// End methods from BackPropagation
// Methods from Propagation
public void finishTraining() {
basicFinishTraining();
}
public FlatNetwork getCurrentFlatNetwork() {
return this.currentFlatNetwork;
}
public MLMethod getMethod() {
return this.network;
}
public void iteration() {
iteration(1);
}
public void rollIteration() {
this.iteration++;
}
public void iteration(final int count) {
try {
for (int i = 0; i < count; i++) {
preIteration();
rollIteration();
calculateGradients();
if (this.currentFlatNetwork.isLimited()) {
learnLimited();
} else {
learn();
}
this.lastError = this.getError();
for (final GradientWorker worker : this.workers) {
EngineArray.arrayCopy(this.currentFlatNetwork.getWeights(),
0, worker.getWeights(), 0,
this.currentFlatNetwork.getWeights().length);
}
if (this.currentFlatNetwork.getHasContext()) {
copyContexts();
}
if (this.reportedException != null) {
throw (new EncogError(this.reportedException));
}
postIteration();
EncogLogging.log(EncogLogging.LEVEL_INFO,
"Training iteration done, error: " + getError());
}
} catch (final ArrayIndexOutOfBoundsException ex) {
EncogValidate.validateNetworkForTraining(this.network,
getTraining());
throw new EncogError(ex);
}
}
public void setThreadCount(final int numThreads) {
this.numThreads = numThreads;
}
@Override
public int getThreadCount() {
return this.numThreads;
}
public void fixFlatSpot(boolean b) {
this.shouldFixFlatSpot = b;
}
public void setErrorFunction(ErrorFunction ef) {
this.ef = ef;
}
public void calculateGradients() {
if (this.workers == null) {
init();
}
if (this.currentFlatNetwork.getHasContext()) {
this.workers[0].getNetwork().clearContext();
}
this.totalError = 0;
if (this.workers.length > 1) {
final TaskGroup group = EngineConcurrency.getInstance()
.createTaskGroup();
for (final GradientWorker worker : this.workers) {
EngineConcurrency.getInstance().processTask(worker, group);
}
group.waitForComplete();
} else {
this.workers[0].run();
}
this.setError(this.totalError / this.workers.length);
}
/**
* Copy the contexts to keep them consistent with multithreaded training.
*/
private void copyContexts() {
// copy the contexts(layer outputO from each group to the next group
for (int i = 0; i < (this.workers.length - 1); i++) {
final double[] src = this.workers[i].getNetwork().getLayerOutput();
final double[] dst = this.workers[i + 1].getNetwork()
.getLayerOutput();
EngineArray.arrayCopy(src, dst);
}
// copy the contexts from the final group to the real network
EngineArray.arrayCopy(this.workers[this.workers.length - 1]
.getNetwork().getLayerOutput(), this.currentFlatNetwork
.getLayerOutput());
}
private void init() {
// fix flat spot, if needed
this.flatSpot = new double[this.currentFlatNetwork
.getActivationFunctions().length];
if (this.shouldFixFlatSpot) {
for (int i = 0; i < this.currentFlatNetwork
.getActivationFunctions().length; i++) {
final ActivationFunction af = this.currentFlatNetwork
.getActivationFunctions()[i];
if (af instanceof ActivationSigmoid) {
this.flatSpot[i] = 0.1;
} else {
this.flatSpot[i] = 0.0;
}
}
} else {
EngineArray.fill(this.flatSpot, 0.0);
}
// setup workers
final DetermineWorkload determine = new DetermineWorkload(
this.numThreads, (int) this.indexable.size());
// this.numThreads, (int) this.indexable.getRecordCount());
this.workers = new GradientWorker[determine.getThreadCount()];
int index = 0;
// handle CPU
for (final IntRange r : determine.calculateWorkers()) {
this.workers[index++] = new GradientWorker(
this.currentFlatNetwork.clone(), this, new HashSet(
this.indexable), r.getLow(), r.getHigh(),
this.flatSpot, this.ef);
}
initOthers();
}
public void report(final double[] gradients, final double error,
final Throwable ex) {
synchronized (this) {
if (ex == null) {
for (int i = 0; i < gradients.length; i++) {
this.gradients[i] += gradients[i];
}
this.totalError += error;
} else {
this.reportedException = ex;
}
}
}
protected void learn() {
final double[] weights = this.currentFlatNetwork.getWeights();
for (int i = 0; i < this.gradients.length; i++) {
weights[i] += updateWeight(this.gradients, this.lastGradient, i);
this.gradients[i] = 0;
}
}
protected void learnLimited() {
final double limit = this.currentFlatNetwork.getConnectionLimit();
final double[] weights = this.currentFlatNetwork.getWeights();
for (int i = 0; i < this.gradients.length; i++) {
if (Math.abs(weights[i]) < limit) {
weights[i] = 0;
} else {
weights[i] += updateWeight(this.gradients, this.lastGradient, i);
}
this.gradients[i] = 0;
}
}
public double[] getLastGradient() {
return lastGradient;
}
// End methods from Propagation
// Methods from BasicTraining/
public void addStrategy(final Strategy strategy) {
strategy.init(this);
this.strategies.add(strategy);
}
public void basicFinishTraining() {
}
public double getError() {
return this.error;
}
public int getIteration() {
return this.iteration;
}
public List<Strategy> getStrategies() {
return this.strategies;
}
public MLDataSet getTraining() {
throw new UnsupportedOperationException(
"This learning method operates on Set<List<MLData>>, not MLDataSet");
}
public boolean isTrainingDone() {
for (Strategy strategy : this.strategies) {
if (strategy instanceof EndTrainingStrategy) {
EndTrainingStrategy end = (EndTrainingStrategy) strategy;
if (end.shouldStop()) {
return true;
}
}
}
return false;
}
public void postIteration() {
for (final Strategy strategy : this.strategies) {
strategy.postIteration();
}
}
public void preIteration() {
this.iteration++;
for (final Strategy strategy : this.strategies) {
strategy.preIteration();
}
}
public void setError(final double error) {
this.error = error;
}
public void setIteration(final int iteration) {
this.iteration = iteration;
}
public void setTraining(final Set<List<MLDataPair>> training) {
//this.training = training;
throw new UnsupportedOperationException();
}
public TrainingImplementationType getImplementationType() {
return this.implementationType;
}
// End Methods from BasicTraining
}

View File

@@ -3,16 +3,14 @@ package net.woodyfolsom.msproj.ann;
import java.util.List;
import java.util.Set;
import net.woodyfolsom.msproj.GameState;
import net.woodyfolsom.msproj.Player;
import org.encog.engine.network.activation.ActivationSigmoid;
import org.encog.ml.data.MLData;
import org.encog.ml.data.MLDataPair;
import org.encog.ml.data.MLDataSet;
import org.encog.ml.data.basic.BasicMLDataSet;
import org.encog.ml.train.MLTrain;
import org.encog.neural.networks.BasicNetwork;
import org.encog.neural.networks.layers.BasicLayer;
import org.encog.neural.networks.training.propagation.back.Backpropagation;
public class WinFilter extends AbstractNeuralNetFilter implements
NeuralNetFilter {
@@ -29,55 +27,46 @@ public class WinFilter extends AbstractNeuralNetFilter implements
this.neuralNetwork = network;
}
@Override
public double computeValue(MLData input) {
if (input instanceof GameStateMLData) {
double[] idealVector = computeVector(input);
GameState gameState = ((GameStateMLData) input).getGameState();
Player playerToMove = gameState.getPlayerToMove();
if (playerToMove == Player.BLACK) {
return idealVector[0];
} else if (playerToMove == Player.WHITE) {
return idealVector[1];
} else {
throw new RuntimeException("Invalid GameState.playerToMove: "
+ playerToMove);
}
} else {
throw new UnsupportedOperationException(
"This NeuralNetFilter only accepts GameStates as input.");
}
}
@Override
public double[] computeVector(MLData input) {
if (input instanceof GameStateMLData) {
return neuralNetwork.compute(input).getData();
} else {
throw new UnsupportedOperationException(
"This NeuralNetFilter only accepts GameStates as input.");
}
}
@Override
public void learn(MLDataSet trainingData) {
throw new UnsupportedOperationException("This filter learns a Set<List<MLDataPair>>, not an MLDataSet");
throw new UnsupportedOperationException(
"This filter learns a Set<List<MLDataPair>>, not an MLDataSet");
}
/**
* Method is necessary because with temporal difference learning, some of the MLDataPairs are related by being a sequence
* of moves within a particular game.
* Method is necessary because with temporal difference learning, some of
* the MLDataPairs are related by being a sequence of moves within a
* particular game.
*/
@Override
public void learn(Set<List<MLDataPair>> trainingSet) {
MLDataSet mlDataset = new BasicMLDataSet();
for (List<MLDataPair> gameRecord : trainingSet) {
for (int t = 0; t < gameRecord.size() - 1; t++) {
mlDataset.add(gameRecord.get(t).getInput(), this.neuralNetwork.compute(gameRecord.get(t)
.getInput()));
}
mlDataset.add(gameRecord.get(gameRecord.size() - 1));
}
// train the neural network
final MLTrain train = new TemporalDifferenceLearning(neuralNetwork,
trainingSet, 0.7, 0.8, 0.25);
final MLTrain train = new TemporalDifference(neuralNetwork, mlDataset, 0.7, 0.8, 0.25);
//final MLTrain train = new Backpropagation(neuralNetwork, mlDataset, 0.7, 0.8);
actualTrainingEpochs = 0;
do {
if (actualTrainingEpochs > 0) {
int gameStateIndex = 0;
for (List<MLDataPair> gameRecord : trainingSet) {
for (int t = 0; t < gameRecord.size() - 1; t++) {
MLDataPair oldDataPair = mlDataset.get(gameStateIndex);
this.neuralNetwork.compute(oldDataPair.getInput());
gameStateIndex++;
}
gameStateIndex++;
}
}
train.iteration();
System.out.println("Epoch #" + actualTrainingEpochs + " Error:"
+ train.getError());

View File

@@ -7,7 +7,7 @@ import org.encog.engine.network.activation.ActivationSigmoid;
import org.encog.ml.data.MLData;
import org.encog.ml.data.MLDataPair;
import org.encog.ml.data.MLDataSet;
import org.encog.ml.data.basic.BasicMLDataSet;
import org.encog.ml.data.basic.BasicMLData;
import org.encog.ml.train.MLTrain;
import org.encog.neural.networks.BasicNetwork;
import org.encog.neural.networks.layers.BasicLayer;
@@ -21,7 +21,7 @@ import org.encog.neural.networks.training.propagation.back.Backpropagation;
*/
public class XORFilter extends AbstractNeuralNetFilter implements
NeuralNetFilter {
public XORFilter() {
// create a neural network, without using a factory
BasicNetwork network = new BasicNetwork();
@@ -34,32 +34,10 @@ public class XORFilter extends AbstractNeuralNetFilter implements
this.neuralNetwork = network;
}
@Override
public void learn(MLDataSet trainingSet) {
// train the neural network
final MLTrain train = new Backpropagation(neuralNetwork,
trainingSet, 0.7, 0.8);
actualTrainingEpochs = 0;
do {
train.iteration();
System.out.println("Epoch #" + actualTrainingEpochs + " Error:"
+ train.getError());
actualTrainingEpochs++;
} while (train.getError() > 0.01
&& actualTrainingEpochs <= maxTrainingEpochs);
public double compute(double x, double y) {
return compute(new BasicMLData(new double[]{x,y})).getData(0);
}
@Override
public double[] computeVector(MLData mlData) {
MLDataSet dataset = new BasicMLDataSet(new double[][] { mlData.getData() },
new double[][] { new double[getOutputSize()] });
MLData output = neuralNetwork.compute(dataset.get(0).getInput());
return output.getData();
}
@Override
public int getInputSize() {
return 2;
@@ -72,12 +50,26 @@ public class XORFilter extends AbstractNeuralNetFilter implements
}
@Override
public double computeValue(MLData input) {
return computeVector(input)[0];
}
public void learn(MLDataSet trainingSet) {
// train the neural network
final MLTrain train = new Backpropagation(neuralNetwork, trainingSet,
0.7, 0.8);
actualTrainingEpochs = 0;
do {
train.iteration();
System.out.println("Epoch #" + actualTrainingEpochs + " Error:"
+ train.getError());
actualTrainingEpochs++;
} while (train.getError() > 0.01
&& actualTrainingEpochs <= maxTrainingEpochs);
}
@Override
public void learn(Set<List<MLDataPair>> trainingSet) {
throw new UnsupportedOperationException("This Filter learns an MLDataSet, not a Set<List<MLData>>.");
throw new UnsupportedOperationException(
"This Filter learns an MLDataSet, not a Set<List<MLData>>.");
}
}

View File

@@ -0,0 +1,5 @@
package net.woodyfolsom.msproj.ann2;
public interface ActivationFunction {
double calculate(double arg);
}

View File

@@ -0,0 +1,53 @@
package net.woodyfolsom.msproj.ann2;
import java.util.Arrays;
public class Layer {
private Neuron[] neurons;
public Layer() {
//default constructor for JAXB
}
public Layer(int numNeurons, int numWeights, ActivationFunction activationFunction) {
neurons = new Neuron[numNeurons];
for (int neuronIndex = 0; neuronIndex < numNeurons; neuronIndex++) {
neurons[neuronIndex] = new Neuron(activationFunction, numWeights);
}
}
public int size() {
return neurons.length;
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + Arrays.hashCode(neurons);
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
Layer other = (Layer) obj;
if (!Arrays.equals(neurons, other.neurons))
return false;
return true;
}
public Neuron[] getNeurons() {
return neurons;
}
public void setNeurons(Neuron[] neurons) {
this.neurons = neurons;
}
}

View File

@@ -0,0 +1,175 @@
package net.woodyfolsom.msproj.ann2;
import java.io.InputStream;
import java.io.OutputStream;
import java.util.Arrays;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Marshaller;
import javax.xml.bind.Unmarshaller;
import javax.xml.bind.annotation.XmlAttribute;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlRootElement;
@XmlRootElement
public class MultiLayerPerceptron extends NeuralNetwork {
private ActivationFunction activationFunction;
private boolean biased;
private Layer[] layers;
public MultiLayerPerceptron() {
this(false, 1, 1);
}
public MultiLayerPerceptron(boolean biased, int... layerSizes) {
int numLayers = layerSizes.length;
if (numLayers < 2) {
throw new IllegalArgumentException("# of layers must be >= 2");
}
this.activationFunction = Sigmoid.function;
this.biased = biased;
this.layers = new Layer[numLayers];
int numWeights;
for (int layerIndex = 0; layerIndex < numLayers; layerIndex++) {
int layerSize = layerSizes[layerIndex];
if (layerSize < 1) {
throw new IllegalArgumentException("Layer size must be >= 1");
}
if (layerIndex == 0) {
numWeights = 0;
if (biased) {
layerSize++;
}
} else {
numWeights = layers[layerIndex - 1].size();
}
layers[layerIndex] = new Layer(layerSize, numWeights,
activationFunction);
}
}
@XmlElement(type=Sigmoid.class)
public ActivationFunction getActivationFunction() {
return activationFunction;
}
@XmlElement
public Layer[] getLayers() {
return layers;
}
@Override
protected double[] getOutput() {
// TODO Auto-generated method stub
return null;
}
@Override
protected Neuron[] getNeurons() {
// TODO Auto-generated method stub
return null;
}
@XmlAttribute
public boolean isBiased() {
return biased;
}
public void setActivationFunction(ActivationFunction activationFunction) {
this.activationFunction = activationFunction;
}
@Override
protected void setInput(double[] input) {
// TODO Auto-generated method stub
}
public void setBiased(boolean biased) {
this.biased = biased;
}
public void setLayers(Layer[] layers) {
this.layers = layers;
}
@Override
public boolean load(InputStream is) {
try {
JAXBContext jc = JAXBContext
.newInstance(MultiLayerPerceptron.class);
// unmarshal from foo.xml
Unmarshaller u = jc.createUnmarshaller();
MultiLayerPerceptron mlp = (MultiLayerPerceptron) u.unmarshal(is);
this.activationFunction = mlp.activationFunction;
this.biased = mlp.biased;
this.layers = mlp.layers;
return true;
} catch (JAXBException je) {
je.printStackTrace();
return false;
}
}
@Override
public boolean save(OutputStream os) {
try {
JAXBContext jc = JAXBContext
.newInstance(MultiLayerPerceptron.class);
Marshaller m = jc.createMarshaller();
m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, true);
m.marshal(this, os);
m.marshal(this, System.out);
return true;
} catch (JAXBException je) {
je.printStackTrace();
return false;
}
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime
* result
+ ((activationFunction == null) ? 0 : activationFunction
.hashCode());
result = prime * result + (biased ? 1231 : 1237);
result = prime * result + Arrays.hashCode(layers);
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
MultiLayerPerceptron other = (MultiLayerPerceptron) obj;
if (activationFunction == null) {
if (other.activationFunction != null)
return false;
} else if (!activationFunction.equals(other.activationFunction))
return false;
if (biased != other.biased)
return false;
if (!Arrays.equals(layers, other.layers))
return false;
return true;
}
}

View File

@@ -0,0 +1,29 @@
package net.woodyfolsom.msproj.ann2;
public class NNData {
private final double[] values;
private final String[] fields;
public NNData(String[] fields, double[] values) {
this.fields = fields;
this.values = values;
}
public double[] getValues() {
return values;
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder("[");
for (int i = 0; i < fields.length; i++) {
if (i > 0) {
sb.append(", " );
}
sb.append(fields[i] + "=" + values[i]);
}
sb.append("]");
return sb.toString();
}
}

View File

@@ -0,0 +1,19 @@
package net.woodyfolsom.msproj.ann2;
public class NNDataPair {
private final NNData actual;
private final NNData ideal;
public NNDataPair(NNData actual, NNData ideal) {
this.actual = actual;
this.ideal = ideal;
}
public NNData getActual() {
return actual;
}
public NNData getIdeal() {
return ideal;
}
}

View File

@@ -0,0 +1,53 @@
package net.woodyfolsom.msproj.ann2;
import java.io.InputStream;
import java.io.OutputStream;
import javax.xml.bind.JAXBException;
/**
* A NeuralNetwork is simply an ordered set of Neurons.
*
* Functions which rely on knowledge of input neurons, output neurons and layers
* are delegated to MultiLayerPerception.
*
* The primary function implemented in this abstract class is feedfoward.
* This function depends only on getNeurons() returning Neurons in feedforward order
* and the returned Neurons must have the correct number of weights for the NeuralNetwork
* configuration.
*
* @author Woody
*
*/
public abstract class NeuralNetwork {
public NeuralNetwork() {
}
public double[] calculate(double[] input) {
zeroInputs();
setInput(input);
feedforward();
return getOutput();
}
protected void feedforward() {
Neuron[] neurons = getNeurons();
}
protected abstract double[] getOutput();
protected abstract Neuron[] getNeurons();
public abstract boolean load(InputStream is);
public abstract boolean save(OutputStream os);
protected abstract void setInput(double[] input);
protected void zeroInputs() {
for (Neuron neuron : getNeurons()) {
neuron.setInput(0.0);
}
}
}

View File

@@ -0,0 +1,92 @@
package net.woodyfolsom.msproj.ann2;
import java.util.Arrays;
import javax.xml.bind.Unmarshaller;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlTransient;
public class Neuron {
private ActivationFunction activationFunction;
private double[] weights;
private transient double input = 0.0;
public Neuron() {
//no-arg constructor for JAXB
}
public Neuron(ActivationFunction activationFunction, int numWeights) {
this.activationFunction = activationFunction;
this.weights = new double[numWeights];
}
@XmlElement(type=Sigmoid.class)
public ActivationFunction getActivationFunction() {
return activationFunction;
}
void afterUnmarshal(Unmarshaller aUnmarshaller, Object aParent)
{
if (weights == null) {
weights = new double[0];
}
}
@XmlTransient
public double getInput() {
return input;
}
public double getOutput() {
return activationFunction.calculate(input);
}
@XmlElement
public double[] getWeights() {
return weights;
}
public void setInput(double input) {
this.input = input;
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime
* result
+ ((activationFunction == null) ? 0 : activationFunction
.hashCode());
result = prime * result + Arrays.hashCode(weights);
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
Neuron other = (Neuron) obj;
if (activationFunction == null) {
if (other.activationFunction != null)
return false;
} else if (!activationFunction.equals(other.activationFunction))
return false;
if (!Arrays.equals(weights, other.weights))
return false;
return true;
}
public void setActivationFunction(ActivationFunction activationFunction) {
this.activationFunction = activationFunction;
}
public void setWeights(double[] weights) {
this.weights = weights;
}
}

View File

@@ -0,0 +1,5 @@
package net.woodyfolsom.msproj.ann2;
public class ObjectiveFunction {
}

View File

@@ -0,0 +1,48 @@
package net.woodyfolsom.msproj.ann2;
public class Sigmoid implements ActivationFunction{
public static final Sigmoid function = new Sigmoid();
private String name;
private Sigmoid() {
this.name = "Sigmoid";
}
public double calculate(double arg) {
return 1.0 / (1 + Math.pow(Math.E, -1.0 * arg));
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + ((name == null) ? 0 : name.hashCode());
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
Sigmoid other = (Sigmoid) obj;
if (name == null) {
if (other.name != null)
return false;
} else if (!name.equals(other.name))
return false;
return true;
}
}

View File

@@ -0,0 +1,10 @@
package net.woodyfolsom.msproj.ann2;
public class Tanh implements ActivationFunction{
@Override
public double calculate(double arg) {
return Math.tanh(arg);
}
}

View File

@@ -50,7 +50,6 @@ public class WinFilterTest {
winFilter.learn(trainingData);
for (List<MLDataPair> trainingSequence : trainingData) {
//for (MLDataPair mlDataPair : trainingSequence) {
for (int stateIndex = 0; stateIndex < trainingSequence.size(); stateIndex++) {
if (stateIndex > 0 && stateIndex < trainingSequence.size()-1) {
continue;
@@ -58,9 +57,8 @@ public class WinFilterTest {
MLData input = trainingSequence.get(stateIndex).getInput();
System.out.println("Turn " + stateIndex + ": " + input + " => "
+ winFilter.computeValue(input));
+ winFilter.compute(input));
}
//}
}
}
}

View File

@@ -73,7 +73,7 @@ public class XORFilterTest {
private void testNetwork(NeuralNetFilter nnLearner, double[][] validationSet) {
for (int valIndex = 0; valIndex < validationSet.length; valIndex++) {
DoublePair dp = new DoublePair(validationSet[valIndex][0],validationSet[valIndex][1]);
System.out.println(dp + " => " + nnLearner.computeValue(dp));
System.out.println(dp + " => " + nnLearner.compute(dp));
}
}
}

View File

@@ -0,0 +1,62 @@
package net.woodyfolsom.msproj.ann2;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import javax.xml.bind.JAXBException;
import org.junit.AfterClass;
import org.junit.BeforeClass;
import org.junit.Test;
public class MultiLayerPerceptronTest {
static final File TEST_FILE = new File("data/test/mlp.net");
@BeforeClass
public static void setUp() {
if (TEST_FILE.exists()) {
TEST_FILE.delete();
}
}
@AfterClass
public static void tearDown() {
if (TEST_FILE.exists()) {
TEST_FILE.delete();
}
}
@Test
public void testConstructor() {
new MultiLayerPerceptron(true, 2, 4, 1);
new MultiLayerPerceptron(false, 2, 1);
}
@Test(expected = IllegalArgumentException.class)
public void testConstructorTooFewLayers() {
new MultiLayerPerceptron(true, 2);
}
@Test(expected = IllegalArgumentException.class)
public void testConstructorTooFewNeurons() {
new MultiLayerPerceptron(true, 2, 4, 0, 1);
}
@Test
public void testPersistence() throws JAXBException, IOException {
NeuralNetwork mlp = new MultiLayerPerceptron(true, 2, 4, 1);
FileOutputStream fos = new FileOutputStream(TEST_FILE);
assertTrue(mlp.save(fos));
fos.close();
FileInputStream fis = new FileInputStream(TEST_FILE);
NeuralNetwork mlp2 = new MultiLayerPerceptron();
assertTrue(mlp2.load(fis));
assertEquals(mlp, mlp2);
fis.close();
}
}

View File

@@ -0,0 +1,18 @@
package net.woodyfolsom.msproj.ann2;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
import org.junit.Test;
public class SigmoidTest {
@Test
public void testCalculate() {
double EPS = 0.001;
ActivationFunction sigmoid = Sigmoid.function;
assertEquals(0.5,sigmoid.calculate(0.0),EPS);
assertTrue(sigmoid.calculate(100.0) > 1.0 - EPS);
assertTrue(sigmoid.calculate(-9000.0) < EPS);
}
}

View File

@@ -0,0 +1,18 @@
package net.woodyfolsom.msproj.ann2;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
import org.junit.Test;
public class TanhTest {
@Test
public void testCalculate() {
double EPS = 0.001;
ActivationFunction sigmoid = new Tanh();
assertEquals(0.0,sigmoid.calculate(0.0),EPS);
assertTrue(sigmoid.calculate(100.0) > 0.5 - EPS);
assertTrue(sigmoid.calculate(-9000.0) < -0.5+EPS);
}
}