Implementing temporal difference learning based heavily on Encog framework.
Not functional yet - incremental update.
This commit is contained in:
@@ -7,7 +7,6 @@
|
||||
<classpathentry kind="lib" path="lib/log4j-1.2.16.jar"/>
|
||||
<classpathentry kind="lib" path="lib/kgsGtp.jar"/>
|
||||
<classpathentry kind="lib" path="lib/antlrworks-1.4.3.jar"/>
|
||||
<classpathentry kind="lib" path="lib/neuroph-2.6.jar"/>
|
||||
<classpathentry kind="lib" path="lib/encog-engine-2.5.0.jar"/>
|
||||
<classpathentry kind="lib" path="lib/encog-java-core.jar" sourcepath="lib/encog-java-core-sources.jar"/>
|
||||
<classpathentry kind="output" path="bin"/>
|
||||
</classpath>
|
||||
|
||||
26
build.xml
26
build.xml
@@ -23,7 +23,7 @@
|
||||
|
||||
<target name="compile" depends="init" description="compile the source ">
|
||||
<!-- Compile the java code from ${src} into ${build} -->
|
||||
<javac srcdir="${src}" destdir="${build}" classpathref="build.classpath" debug="true" source="1.6" target="1.6"/>
|
||||
<javac includeantruntime="false" srcdir="${src}" destdir="${build}" classpathref="build.classpath" debug="true"/>
|
||||
</target>
|
||||
|
||||
<target name="compile-test" depends="compile">
|
||||
@@ -33,9 +33,25 @@
|
||||
</target>
|
||||
|
||||
<target name="copy-resources">
|
||||
<copy todir="${dist}">
|
||||
<copy todir="${dist}/data">
|
||||
<fileset dir="data" />
|
||||
</copy>
|
||||
<copy todir="${build}/net/woodyfolsom/msproj/gui">
|
||||
<fileset dir="${src}/net/woodyfolsom/msproj/gui">
|
||||
<exclude name="**/*.java"/>
|
||||
</fileset>
|
||||
</copy>
|
||||
<copy todir="${build}/net/woodyfolsom/msproj/sfx">
|
||||
<fileset dir="${src}/net/woodyfolsom/msproj/sfx">
|
||||
<exclude name="**/*.java"/>
|
||||
</fileset>
|
||||
</copy>
|
||||
</target>
|
||||
|
||||
<target name="copy-libs">
|
||||
<copy todir="${dist}/lib">
|
||||
<fileset dir="lib" />
|
||||
</copy>
|
||||
</target>
|
||||
|
||||
<target name="clean" description="clean up">
|
||||
@@ -44,12 +60,12 @@
|
||||
<delete dir="${dist}" />
|
||||
</target>
|
||||
|
||||
<target name="dist" depends="compile,copy-resources" description="generate the distribution">
|
||||
<target name="dist" depends="compile,copy-resources,copy-libs" description="generate the distribution">
|
||||
<jar jarfile="${dist}/GoGame.jar">
|
||||
<fileset dir="${build}" excludes="**/*Test.class" />
|
||||
<manifest>
|
||||
<attribute name="Main-Class" value="net.woodyfolsom.msproj.GoGame" />
|
||||
<attribute name="Class-Path" value="kgsGtp.jar log4j-1.2.16.jar"/>
|
||||
<attribute name="Main-Class" value="net.woodyfolsom.msproj.StandAloneGame" />
|
||||
<attribute name="Class-Path" value="lib/kgsGtp.jar lib/log4j-1.2.16.jar lib/antlrworks-1.4.3.jar lib/encog-engine-2.5.0.jar lib/neuroph-2.6.jar"/>
|
||||
</manifest>
|
||||
</jar>
|
||||
</target>
|
||||
|
||||
@@ -1,7 +1,10 @@
|
||||
PlayerOne=ROOT_PAR
|
||||
PlayerOne=RANDOM
|
||||
PlayerTwo=RANDOM
|
||||
GUIDelay=2000 //1 second
|
||||
GUIDelay=1000 //1 second
|
||||
BoardSize=9
|
||||
Komi=6.5
|
||||
NumGames=10 //Games for each player
|
||||
TurnTime=2000 //seconds per player per turn
|
||||
NumGames=1000 //Games for each color per player
|
||||
TurnTime=1000 //seconds per player per turn
|
||||
SpectatorBoardShown=false;
|
||||
WhiteMoveLogged=false;
|
||||
BlackMoveLogged=false;
|
||||
Binary file not shown.
Binary file not shown.
BIN
lib/encog-java-core-javadoc.jar
Normal file
BIN
lib/encog-java-core-javadoc.jar
Normal file
Binary file not shown.
BIN
lib/encog-java-core-sources.jar
Normal file
BIN
lib/encog-java-core-sources.jar
Normal file
Binary file not shown.
BIN
lib/encog-java-core.jar
Normal file
BIN
lib/encog-java-core.jar
Normal file
Binary file not shown.
Binary file not shown.
@@ -23,6 +23,16 @@ public class GameRecord {
|
||||
moves.add(Action.NONE);
|
||||
}
|
||||
|
||||
public GameRecord(GameRecord that) {
|
||||
for(GameState gameState : that.gameStates) {
|
||||
gameStates.add(new GameState(gameState));
|
||||
}
|
||||
//initial 'move' of Action.NONE allows for a game that starts with a board setup
|
||||
for (Action action : that.moves) {
|
||||
moves.add(action);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Adds a comment for the current turn.
|
||||
* @param comment
|
||||
|
||||
@@ -13,6 +13,9 @@ public class GameSettings {
|
||||
private int boardSize = 9;
|
||||
private double komi = 6.5;
|
||||
private int numGames = 10;
|
||||
private boolean spectatorBoardShown = false;
|
||||
private boolean whiteMoveLogged = true;
|
||||
private boolean blackMoveLogged = true;
|
||||
|
||||
private GameSettings() {
|
||||
}
|
||||
@@ -49,6 +52,12 @@ public class GameSettings {
|
||||
gameSettings.setNumGames(Integer.parseInt(value));
|
||||
} else if ("Komi".equals(name)) {
|
||||
gameSettings.setKomi(Double.parseDouble(value));
|
||||
} else if ("SpectatorBoardShown".equals(name)) {
|
||||
gameSettings.setSpectatorBoardShown(Boolean.parseBoolean(value));
|
||||
} else if ("WhiteMoveLogged".equals(name)) {
|
||||
gameSettings.setWhiteMoveLogged(Boolean.parseBoolean(value));
|
||||
} else if ("BlackMoveLogged".equals(name)) {
|
||||
gameSettings.setBlackMoveLogged(Boolean.parseBoolean(value));
|
||||
} else {
|
||||
System.out.println("Ignoring game settings property with unrecognized name: " + name);
|
||||
}
|
||||
@@ -127,4 +136,29 @@ public class GameSettings {
|
||||
sb.append(", GUIDelay=" + guiDelay);
|
||||
return sb.toString();
|
||||
}
|
||||
|
||||
public boolean isSpectatorBoardShown() {
|
||||
return spectatorBoardShown;
|
||||
}
|
||||
|
||||
private void setSpectatorBoardShown(boolean spectatorBoardShown) {
|
||||
this.spectatorBoardShown = spectatorBoardShown;
|
||||
}
|
||||
|
||||
public boolean isWhiteMoveLogged() {
|
||||
return whiteMoveLogged;
|
||||
}
|
||||
|
||||
private void setWhiteMoveLogged(boolean whiteMoveLogged) {
|
||||
this.whiteMoveLogged = whiteMoveLogged;
|
||||
}
|
||||
|
||||
public boolean isBlackMoveLogged() {
|
||||
return blackMoveLogged;
|
||||
}
|
||||
|
||||
private void setBlackMoveLogged(boolean blackMoveLogged) {
|
||||
this.blackMoveLogged = blackMoveLogged;
|
||||
}
|
||||
|
||||
}
|
||||
@@ -4,8 +4,6 @@ import java.io.File;
|
||||
import java.io.FileOutputStream;
|
||||
import java.io.IOException;
|
||||
import java.io.InputStream;
|
||||
import java.text.DateFormat;
|
||||
import java.text.SimpleDateFormat;
|
||||
|
||||
import net.woodyfolsom.msproj.gui.Goban;
|
||||
import net.woodyfolsom.msproj.policy.HumanGuiInput;
|
||||
@@ -65,10 +63,11 @@ public class Referee {
|
||||
return gameRecord;
|
||||
}
|
||||
|
||||
public GameResult play(GameConfig gameConfig, int gameNo) {
|
||||
public GameResult play(GameConfig gameConfig, int gameNo,
|
||||
boolean showSpectatorBoard, boolean logGameRecord) {
|
||||
GameRecord gameRecord = new GameRecord(gameConfig);
|
||||
|
||||
System.out.println("Game started.");
|
||||
//System.out.println("Game started.");
|
||||
|
||||
GameState initialGameState = gameRecord.getGameState(gameRecord
|
||||
.getNumTurns());
|
||||
@@ -78,20 +77,21 @@ public class Referee {
|
||||
whitePolicy.setState(initialGameState);
|
||||
|
||||
Goban spectatorBoard;
|
||||
if (blackPolicy instanceof HumanGuiInput
|
||||
|| whitePolicy instanceof HumanGuiInput) {
|
||||
if (blackPolicy instanceof HumanGuiInput || whitePolicy instanceof HumanGuiInput) {
|
||||
System.out.println("Human is controlling the game board GUI.");
|
||||
spectatorBoard = null;
|
||||
} else {
|
||||
} else if (showSpectatorBoard){
|
||||
System.out.println("Starting game board GUI in spectator mode.");
|
||||
spectatorBoard = new Goban(gameConfig, null);
|
||||
spectatorBoard = new Goban(gameConfig, null, "Game #" + gameNo);
|
||||
} else { // else showing spectator board is disabled
|
||||
spectatorBoard = null;
|
||||
}
|
||||
|
||||
|
||||
try {
|
||||
while (!gameRecord.isFinished()) {
|
||||
GameState gameState = gameRecord.getGameState(gameRecord
|
||||
.getNumTurns());
|
||||
//System.out.println(gameState);
|
||||
// System.out.println(gameState);
|
||||
|
||||
Player playerToMove = gameRecord.getPlayerToMove();
|
||||
Policy policy = getPolicy(playerToMove);
|
||||
@@ -120,8 +120,9 @@ public class Referee {
|
||||
|
||||
System.out.println("Game over. Result: " + result);
|
||||
|
||||
//DateFormat dateFormat = new SimpleDateFormat("yyMMddHHmmssZ");
|
||||
// DateFormat dateFormat = new SimpleDateFormat("yyMMddHHmmssZ");
|
||||
|
||||
if (logGameRecord) {
|
||||
try {
|
||||
|
||||
// File sgfFile = new File("gogame-" + dateFormat.format(new Date())
|
||||
@@ -143,8 +144,9 @@ public class Referee {
|
||||
System.out.println("Unable to save game file due to IOException: "
|
||||
+ ioe.getMessage());
|
||||
}
|
||||
|
||||
System.out.println("Game finished.");
|
||||
}
|
||||
|
||||
//System.out.println("Game finished.");
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
@@ -19,8 +19,9 @@ import net.woodyfolsom.msproj.policy.RandomMovePolicy;
|
||||
import net.woodyfolsom.msproj.policy.RootParallelization;
|
||||
|
||||
public class StandAloneGame {
|
||||
private static final int EXIT_NOMINAL = 0;
|
||||
private static final int EXIT_IO_EXCEPTION = 1;
|
||||
public static final int EXIT_USER_QUIT = 1;
|
||||
public static final int EXIT_NOMINAL = 0;
|
||||
public static final int EXIT_IO_EXCEPTION = -1;
|
||||
|
||||
private int gameNo = 0;
|
||||
|
||||
@@ -38,7 +39,9 @@ public class StandAloneGame {
|
||||
parsePlayerType(gameSettings.getPlayerOne()),
|
||||
parsePlayerType(gameSettings.getPlayerTwo()),
|
||||
gameSettings.getBoardSize(), gameSettings.getKomi(),
|
||||
gameSettings.getNumGames(), gameSettings.getTurnTime());
|
||||
gameSettings.getNumGames(), gameSettings.getTurnTime(),
|
||||
gameSettings.isSpectatorBoardShown(),
|
||||
gameSettings.isBlackMoveLogged(), gameSettings.isWhiteMoveLogged());
|
||||
} catch (IOException ioe) {
|
||||
ioe.printStackTrace();
|
||||
System.exit(EXIT_IO_EXCEPTION);
|
||||
@@ -65,7 +68,8 @@ public class StandAloneGame {
|
||||
}
|
||||
|
||||
public void playGame(PLAYER_TYPE playerType1, PLAYER_TYPE playerType2,
|
||||
int size, double komi, int rounds, long turnLength) {
|
||||
int size, double komi, int rounds, long turnLength, boolean showSpectatorBoard,
|
||||
boolean blackMoveLogged, boolean whiteMoveLogged) {
|
||||
|
||||
long startTime = System.currentTimeMillis();
|
||||
|
||||
@@ -74,32 +78,31 @@ public class StandAloneGame {
|
||||
|
||||
Referee referee = new Referee();
|
||||
referee.setPolicy(Player.BLACK,
|
||||
getPolicy(playerType1, gameConfig, Player.BLACK, turnLength));
|
||||
getPolicy(playerType1, gameConfig, Player.BLACK, turnLength, blackMoveLogged));
|
||||
referee.setPolicy(Player.WHITE,
|
||||
getPolicy(playerType2, gameConfig, Player.WHITE, turnLength));
|
||||
getPolicy(playerType2, gameConfig, Player.WHITE, turnLength, whiteMoveLogged));
|
||||
|
||||
List<GameResult> round1results = new ArrayList<GameResult>();
|
||||
|
||||
boolean logGameRecords = rounds <= 50;
|
||||
for (int round = 0; round < rounds; round++) {
|
||||
gameNo++;
|
||||
round1results.add(referee.play(gameConfig, gameNo));
|
||||
round1results.add(referee.play(gameConfig, gameNo, showSpectatorBoard, logGameRecords));
|
||||
}
|
||||
|
||||
List<GameResult> round2results = new ArrayList<GameResult>();
|
||||
|
||||
referee.setPolicy(Player.BLACK,
|
||||
getPolicy(playerType2, gameConfig, Player.BLACK, turnLength));
|
||||
getPolicy(playerType2, gameConfig, Player.BLACK, turnLength, blackMoveLogged));
|
||||
referee.setPolicy(Player.WHITE,
|
||||
getPolicy(playerType1, gameConfig, Player.WHITE, turnLength));
|
||||
getPolicy(playerType1, gameConfig, Player.WHITE, turnLength, whiteMoveLogged));
|
||||
for (int round = 0; round < rounds; round++) {
|
||||
gameNo++;
|
||||
round2results.add(referee.play(gameConfig, gameNo));
|
||||
round2results.add(referee.play(gameConfig, gameNo, showSpectatorBoard, logGameRecords));
|
||||
}
|
||||
|
||||
long endTime = System.currentTimeMillis();
|
||||
|
||||
DateFormat dateFormat = new SimpleDateFormat("yyMMddHHmmss");
|
||||
|
||||
try {
|
||||
|
||||
File txtFile = new File("gotournament-"
|
||||
@@ -107,14 +110,16 @@ public class StandAloneGame {
|
||||
FileWriter writer = new FileWriter(txtFile);
|
||||
|
||||
try {
|
||||
if (!logGameRecords) {
|
||||
System.out.println("Each player is set to play more than 50 rounds as each color; omitting individual game .sgf log file output.");
|
||||
}
|
||||
|
||||
logResults(writer, round1results, playerType1.toString(),
|
||||
playerType2.toString());
|
||||
playerType2.toString());
|
||||
logResults(writer, round2results, playerType2.toString(),
|
||||
playerType1.toString());
|
||||
|
||||
playerType1.toString());
|
||||
writer.write("Elapsed Time: " + (endTime - startTime) / 1000.0
|
||||
+ " seconds.");
|
||||
|
||||
System.out.println("Game tournament saved as "
|
||||
+ txtFile.getAbsolutePath());
|
||||
} finally {
|
||||
@@ -149,19 +154,19 @@ public class StandAloneGame {
|
||||
}
|
||||
|
||||
private Policy getPolicy(PLAYER_TYPE playerType, GameConfig gameConfig,
|
||||
Player player, long turnLength) {
|
||||
Player player, long turnLength, boolean moveLogged) {
|
||||
switch (playerType) {
|
||||
case HUMAN:
|
||||
return new HumanKeyboardInput();
|
||||
case HUMAN_GUI:
|
||||
return new HumanGuiInput(new Goban(gameConfig, player));
|
||||
return new HumanGuiInput(new Goban(gameConfig, player,""));
|
||||
case ROOT_PAR:
|
||||
return new RootParallelization(4, turnLength);
|
||||
case UCT:
|
||||
return new MonteCarloUCT(new RandomMovePolicy(), turnLength);
|
||||
case RANDOM:
|
||||
RandomMovePolicy randomMovePolicy = new RandomMovePolicy();
|
||||
randomMovePolicy.setLogging(true);
|
||||
randomMovePolicy.setLogging(moveLogged);
|
||||
return randomMovePolicy;
|
||||
case RAVE:
|
||||
return new MonteCarloAMAF(new RandomMovePolicy(), turnLength);
|
||||
|
||||
54
src/net/woodyfolsom/msproj/ann/AbstractNeuralNetFilter.java
Normal file
54
src/net/woodyfolsom/msproj/ann/AbstractNeuralNetFilter.java
Normal file
@@ -0,0 +1,54 @@
|
||||
package net.woodyfolsom.msproj.ann;
|
||||
|
||||
import java.io.File;
|
||||
import java.io.FileInputStream;
|
||||
import java.io.FileOutputStream;
|
||||
import java.io.IOException;
|
||||
|
||||
import org.encog.neural.networks.BasicNetwork;
|
||||
import org.encog.neural.networks.PersistBasicNetwork;
|
||||
|
||||
public abstract class AbstractNeuralNetFilter implements NeuralNetFilter {
|
||||
protected BasicNetwork neuralNetwork;
|
||||
protected int actualTrainingEpochs = 0;
|
||||
protected int maxTrainingEpochs = 1000;
|
||||
|
||||
public int getActualTrainingEpochs() {
|
||||
return actualTrainingEpochs;
|
||||
}
|
||||
|
||||
public int getMaxTrainingEpochs() {
|
||||
return maxTrainingEpochs;
|
||||
}
|
||||
|
||||
@Override
|
||||
public BasicNetwork getNeuralNetwork() {
|
||||
return neuralNetwork;
|
||||
}
|
||||
|
||||
public void load(String filename) throws IOException {
|
||||
FileInputStream fis = new FileInputStream(new File(filename));
|
||||
neuralNetwork = (BasicNetwork) new PersistBasicNetwork().read(fis);
|
||||
fis.close();
|
||||
}
|
||||
|
||||
@Override
|
||||
public void reset() {
|
||||
neuralNetwork.reset();
|
||||
}
|
||||
|
||||
@Override
|
||||
public void reset(int seed) {
|
||||
neuralNetwork.reset(seed);
|
||||
}
|
||||
|
||||
public void save(String filename) throws IOException {
|
||||
FileOutputStream fos = new FileOutputStream(new File(filename));
|
||||
new PersistBasicNetwork().save(fos, getNeuralNetwork());
|
||||
fos.close();
|
||||
}
|
||||
|
||||
public void setMaxTrainingEpochs(int max) {
|
||||
this.maxTrainingEpochs = max;
|
||||
}
|
||||
}
|
||||
17
src/net/woodyfolsom/msproj/ann/DoublePair.java
Normal file
17
src/net/woodyfolsom/msproj/ann/DoublePair.java
Normal file
@@ -0,0 +1,17 @@
|
||||
package net.woodyfolsom.msproj.ann;
|
||||
|
||||
import org.encog.ml.data.basic.BasicMLData;
|
||||
|
||||
public class DoublePair extends BasicMLData {
|
||||
// private final double x;
|
||||
// private final double y;
|
||||
|
||||
/**
|
||||
*
|
||||
*/
|
||||
private static final long serialVersionUID = 1L;
|
||||
|
||||
public DoublePair(double x, double y) {
|
||||
super(new double[] { x, y });
|
||||
}
|
||||
}
|
||||
95
src/net/woodyfolsom/msproj/ann/ErrorCalculation.java
Normal file
95
src/net/woodyfolsom/msproj/ann/ErrorCalculation.java
Normal file
@@ -0,0 +1,95 @@
|
||||
package net.woodyfolsom.msproj.ann;
|
||||
|
||||
import org.encog.mathutil.error.ErrorCalculationMode;
|
||||
|
||||
/*
|
||||
Initial erison of this class was a verbatim copy from Encog framework.
|
||||
*/
|
||||
|
||||
public class ErrorCalculation {
|
||||
|
||||
private static ErrorCalculationMode mode = ErrorCalculationMode.MSE;
|
||||
|
||||
public static ErrorCalculationMode getMode() {
|
||||
return ErrorCalculation.mode;
|
||||
}
|
||||
|
||||
public static void setMode(final ErrorCalculationMode theMode) {
|
||||
ErrorCalculation.mode = theMode;
|
||||
}
|
||||
|
||||
private double globalError;
|
||||
|
||||
private int setSize;
|
||||
|
||||
public final double calculate() {
|
||||
if (this.setSize == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
switch (ErrorCalculation.getMode()) {
|
||||
case RMS:
|
||||
return calculateRMS();
|
||||
case MSE:
|
||||
return calculateMSE();
|
||||
case ESS:
|
||||
return calculateESS();
|
||||
default:
|
||||
return calculateMSE();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
public final double calculateMSE() {
|
||||
if (this.setSize == 0) {
|
||||
return 0;
|
||||
}
|
||||
final double err = this.globalError / this.setSize;
|
||||
return err;
|
||||
|
||||
}
|
||||
|
||||
public final double calculateESS() {
|
||||
if (this.setSize == 0) {
|
||||
return 0;
|
||||
}
|
||||
final double err = this.globalError / 2;
|
||||
return err;
|
||||
|
||||
}
|
||||
|
||||
public final double calculateRMS() {
|
||||
if (this.setSize == 0) {
|
||||
return 0;
|
||||
}
|
||||
final double err = Math.sqrt(this.globalError / this.setSize);
|
||||
return err;
|
||||
}
|
||||
|
||||
public final void reset() {
|
||||
this.globalError = 0;
|
||||
this.setSize = 0;
|
||||
}
|
||||
|
||||
public final void updateError(final double actual, final double ideal) {
|
||||
|
||||
double delta = ideal - actual;
|
||||
|
||||
this.globalError += delta * delta;
|
||||
|
||||
this.setSize++;
|
||||
|
||||
}
|
||||
|
||||
public final void updateError(final double[] actual, final double[] ideal,
|
||||
final double significance) {
|
||||
for (int i = 0; i < actual.length; i++) {
|
||||
double delta = (ideal[i] - actual[i]) * significance;
|
||||
|
||||
this.globalError += delta * delta;
|
||||
}
|
||||
|
||||
this.setSize += ideal.length;
|
||||
}
|
||||
|
||||
}
|
||||
25
src/net/woodyfolsom/msproj/ann/GameStateMLData.java
Normal file
25
src/net/woodyfolsom/msproj/ann/GameStateMLData.java
Normal file
@@ -0,0 +1,25 @@
|
||||
package net.woodyfolsom.msproj.ann;
|
||||
|
||||
import net.woodyfolsom.msproj.GameState;
|
||||
|
||||
import org.encog.ml.data.basic.BasicMLData;
|
||||
|
||||
public class GameStateMLData extends BasicMLData {
|
||||
|
||||
/**
|
||||
*
|
||||
*/
|
||||
private static final long serialVersionUID = 1L;
|
||||
|
||||
private GameState gameState;
|
||||
|
||||
public GameStateMLData(double[] d, GameState gameState) {
|
||||
super(d);
|
||||
// TODO Auto-generated constructor stub
|
||||
this.gameState = gameState;
|
||||
}
|
||||
|
||||
public GameState getGameState() {
|
||||
return gameState;
|
||||
}
|
||||
}
|
||||
121
src/net/woodyfolsom/msproj/ann/GameStateMLDataPair.java
Normal file
121
src/net/woodyfolsom/msproj/ann/GameStateMLDataPair.java
Normal file
@@ -0,0 +1,121 @@
|
||||
package net.woodyfolsom.msproj.ann;
|
||||
|
||||
import net.woodyfolsom.msproj.GameResult;
|
||||
import net.woodyfolsom.msproj.GameState;
|
||||
import net.woodyfolsom.msproj.Player;
|
||||
|
||||
import org.encog.ml.data.MLData;
|
||||
import org.encog.ml.data.MLDataPair;
|
||||
import org.encog.ml.data.basic.BasicMLData;
|
||||
import org.encog.ml.data.basic.BasicMLDataPair;
|
||||
import org.encog.util.kmeans.Centroid;
|
||||
|
||||
public class GameStateMLDataPair implements MLDataPair {
|
||||
//private final String[] inputs = { "BlackScore", "WhiteScore" };
|
||||
//private final String[] outputs = { "BlackWins", "WhiteWins" };
|
||||
|
||||
private BasicMLDataPair mlDataPairDelegate;
|
||||
private GameState gameState;
|
||||
|
||||
public GameStateMLDataPair(GameState gameState) {
|
||||
this.gameState = gameState;
|
||||
mlDataPairDelegate = new BasicMLDataPair(
|
||||
new GameStateMLData(createInput(), gameState), new BasicMLData(createIdeal()));
|
||||
}
|
||||
|
||||
public GameStateMLDataPair(GameStateMLDataPair that) {
|
||||
this.gameState = new GameState(that.gameState);
|
||||
mlDataPairDelegate = new BasicMLDataPair(
|
||||
that.mlDataPairDelegate.getInput(),
|
||||
that.mlDataPairDelegate.getIdeal());
|
||||
}
|
||||
|
||||
@Override
|
||||
public MLDataPair clone() {
|
||||
return new GameStateMLDataPair(this);
|
||||
}
|
||||
|
||||
@Override
|
||||
public Centroid<MLDataPair> createCentroid() {
|
||||
return mlDataPairDelegate.createCentroid();
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a vector of normalized scores from GameState.
|
||||
*
|
||||
* @return
|
||||
*/
|
||||
private double[] createInput() {
|
||||
|
||||
GameResult result = gameState.getResult();
|
||||
|
||||
double maxScore = gameState.getGameConfig().getSize()
|
||||
* gameState.getGameConfig().getSize();
|
||||
|
||||
double whiteScore = Math.min(1.0, result.getWhiteScore() / maxScore);
|
||||
double blackScore = Math.min(1.0, result.getBlackScore() / maxScore);
|
||||
|
||||
return new double[] { blackScore, whiteScore };
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a vector of values indicating strength of black/white win output
|
||||
* from network.
|
||||
*
|
||||
* @return
|
||||
*/
|
||||
private double[] createIdeal() {
|
||||
GameResult result = gameState.getResult();
|
||||
|
||||
double blackWinner = result.isWinner(Player.BLACK) ? 1.0 : 0.0;
|
||||
double whiteWinner = result.isWinner(Player.WHITE) ? 1.0 : 0.0;
|
||||
|
||||
return new double[] { blackWinner, whiteWinner };
|
||||
}
|
||||
|
||||
@Override
|
||||
public MLData getIdeal() {
|
||||
return mlDataPairDelegate.getIdeal();
|
||||
}
|
||||
|
||||
@Override
|
||||
public double[] getIdealArray() {
|
||||
return mlDataPairDelegate.getIdealArray();
|
||||
}
|
||||
|
||||
@Override
|
||||
public MLData getInput() {
|
||||
return mlDataPairDelegate.getInput();
|
||||
}
|
||||
|
||||
@Override
|
||||
public double[] getInputArray() {
|
||||
return mlDataPairDelegate.getInputArray();
|
||||
}
|
||||
|
||||
@Override
|
||||
public double getSignificance() {
|
||||
return mlDataPairDelegate.getSignificance();
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean isSupervised() {
|
||||
return mlDataPairDelegate.isSupervised();
|
||||
}
|
||||
|
||||
@Override
|
||||
public void setIdealArray(double[] arg0) {
|
||||
mlDataPairDelegate.setIdealArray(arg0);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void setInputArray(double[] arg0) {
|
||||
mlDataPairDelegate.setInputArray(arg0);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void setSignificance(double arg0) {
|
||||
mlDataPairDelegate.setSignificance(arg0);
|
||||
}
|
||||
|
||||
}
|
||||
172
src/net/woodyfolsom/msproj/ann/GradientWorker.java
Normal file
172
src/net/woodyfolsom/msproj/ann/GradientWorker.java
Normal file
@@ -0,0 +1,172 @@
|
||||
package net.woodyfolsom.msproj.ann;
|
||||
/*
|
||||
* Class copied verbatim from Encog framework due to dependency on Propagation
|
||||
* implementation.
|
||||
*
|
||||
* Encog(tm) Core v3.2 - Java Version
|
||||
* http://www.heatonresearch.com/encog/
|
||||
* http://code.google.com/p/encog-java/
|
||||
|
||||
* Copyright 2008-2012 Heaton Research, Inc.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*
|
||||
* For more information on Heaton Research copyrights, licenses
|
||||
* and trademarks visit:
|
||||
* http://www.heatonresearch.com/copyright
|
||||
*/
|
||||
|
||||
import java.util.List;
|
||||
import java.util.Set;
|
||||
|
||||
import org.encog.engine.network.activation.ActivationFunction;
|
||||
import org.encog.ml.data.MLDataPair;
|
||||
import org.encog.ml.data.MLDataSet;
|
||||
import org.encog.ml.data.basic.BasicMLDataPair;
|
||||
import org.encog.neural.error.ErrorFunction;
|
||||
import org.encog.neural.flat.FlatNetwork;
|
||||
import org.encog.util.EngineArray;
|
||||
import org.encog.util.concurrency.EngineTask;
|
||||
|
||||
public class GradientWorker implements EngineTask {
|
||||
|
||||
private final FlatNetwork network;
|
||||
private final ErrorCalculation errorCalculation = new ErrorCalculation();
|
||||
private final double[] actual;
|
||||
private final double[] layerDelta;
|
||||
private final int[] layerCounts;
|
||||
private final int[] layerFeedCounts;
|
||||
private final int[] layerIndex;
|
||||
private final int[] weightIndex;
|
||||
private final double[] layerOutput;
|
||||
private final double[] layerSums;
|
||||
private final double[] gradients;
|
||||
private final double[] weights;
|
||||
private final MLDataPair pair;
|
||||
private final Set<List<MLDataPair>> training;
|
||||
private final int low;
|
||||
private final int high;
|
||||
private final TemporalDifferenceLearning owner;
|
||||
private double[] flatSpot;
|
||||
private final ErrorFunction errorFunction;
|
||||
|
||||
public GradientWorker(final FlatNetwork theNetwork,
|
||||
final TemporalDifferenceLearning theOwner,
|
||||
final Set<List<MLDataPair>> theTraining, final int theLow,
|
||||
final int theHigh, final double[] flatSpot,
|
||||
ErrorFunction ef) {
|
||||
this.network = theNetwork;
|
||||
this.training = theTraining;
|
||||
this.low = theLow;
|
||||
this.high = theHigh;
|
||||
this.owner = theOwner;
|
||||
this.flatSpot = flatSpot;
|
||||
this.errorFunction = ef;
|
||||
|
||||
this.layerDelta = new double[network.getLayerOutput().length];
|
||||
this.gradients = new double[network.getWeights().length];
|
||||
this.actual = new double[network.getOutputCount()];
|
||||
|
||||
this.weights = network.getWeights();
|
||||
this.layerIndex = network.getLayerIndex();
|
||||
this.layerCounts = network.getLayerCounts();
|
||||
this.weightIndex = network.getWeightIndex();
|
||||
this.layerOutput = network.getLayerOutput();
|
||||
this.layerSums = network.getLayerSums();
|
||||
this.layerFeedCounts = network.getLayerFeedCounts();
|
||||
|
||||
this.pair = BasicMLDataPair.createPair(network.getInputCount(), network
|
||||
.getOutputCount());
|
||||
}
|
||||
|
||||
public FlatNetwork getNetwork() {
|
||||
return this.network;
|
||||
}
|
||||
|
||||
public double[] getWeights() {
|
||||
return this.weights;
|
||||
}
|
||||
|
||||
private void process(final double[] input, final double[] ideal, double s) {
|
||||
this.network.compute(input, this.actual);
|
||||
|
||||
this.errorCalculation.updateError(this.actual, ideal, s);
|
||||
this.errorFunction.calculateError(ideal, actual, this.layerDelta);
|
||||
|
||||
for (int i = 0; i < this.actual.length; i++) {
|
||||
|
||||
this.layerDelta[i] = ((this.network.getActivationFunctions()[0]
|
||||
.derivativeFunction(this.layerSums[i],this.layerOutput[i]) + this.flatSpot[0]))
|
||||
* (this.layerDelta[i] * s);
|
||||
}
|
||||
|
||||
for (int i = this.network.getBeginTraining(); i < this.network
|
||||
.getEndTraining(); i++) {
|
||||
processLevel(i);
|
||||
}
|
||||
}
|
||||
|
||||
private void processLevel(final int currentLevel) {
|
||||
final int fromLayerIndex = this.layerIndex[currentLevel + 1];
|
||||
final int toLayerIndex = this.layerIndex[currentLevel];
|
||||
final int fromLayerSize = this.layerCounts[currentLevel + 1];
|
||||
final int toLayerSize = this.layerFeedCounts[currentLevel];
|
||||
|
||||
final int index = this.weightIndex[currentLevel];
|
||||
final ActivationFunction activation = this.network
|
||||
.getActivationFunctions()[currentLevel];
|
||||
final double currentFlatSpot = this.flatSpot[currentLevel + 1];
|
||||
|
||||
// handle weights
|
||||
int yi = fromLayerIndex;
|
||||
for (int y = 0; y < fromLayerSize; y++) {
|
||||
final double output = this.layerOutput[yi];
|
||||
double sum = 0;
|
||||
int xi = toLayerIndex;
|
||||
int wi = index + y;
|
||||
for (int x = 0; x < toLayerSize; x++) {
|
||||
this.gradients[wi] += output * this.layerDelta[xi];
|
||||
sum += this.weights[wi] * this.layerDelta[xi];
|
||||
wi += fromLayerSize;
|
||||
xi++;
|
||||
}
|
||||
|
||||
this.layerDelta[yi] = sum
|
||||
* (activation.derivativeFunction(this.layerSums[yi],this.layerOutput[yi])+currentFlatSpot);
|
||||
yi++;
|
||||
}
|
||||
}
|
||||
|
||||
public final void run() {
|
||||
try {
|
||||
this.errorCalculation.reset();
|
||||
//for (int i = this.low; i <= this.high; i++) {
|
||||
for (List<MLDataPair> trainingSequence : training) {
|
||||
MLDataPair mldp = trainingSequence.get(trainingSequence.size()-1);
|
||||
this.pair.setInputArray(mldp.getInputArray());
|
||||
if (this.pair.getIdealArray() != null) {
|
||||
this.pair.setIdealArray(mldp.getIdealArray());
|
||||
}
|
||||
//this.training.getRecord(i, this.pair);
|
||||
process(this.pair.getInputArray(), this.pair.getIdealArray(),pair.getSignificance());
|
||||
}
|
||||
//}
|
||||
final double error = this.errorCalculation.calculate();
|
||||
this.owner.report(this.gradients, error, null);
|
||||
EngineArray.fill(this.gradients, 0);
|
||||
} catch (final Throwable ex) {
|
||||
this.owner.report(null, 0, ex);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
31
src/net/woodyfolsom/msproj/ann/NeuralNetFilter.java
Normal file
31
src/net/woodyfolsom/msproj/ann/NeuralNetFilter.java
Normal file
@@ -0,0 +1,31 @@
|
||||
package net.woodyfolsom.msproj.ann;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.util.List;
|
||||
import java.util.Set;
|
||||
|
||||
import org.encog.ml.data.MLData;
|
||||
import org.encog.ml.data.MLDataPair;
|
||||
import org.encog.ml.data.MLDataSet;
|
||||
import org.encog.neural.networks.BasicNetwork;
|
||||
|
||||
public interface NeuralNetFilter {
|
||||
BasicNetwork getNeuralNetwork();
|
||||
|
||||
public int getActualTrainingEpochs();
|
||||
public int getInputSize();
|
||||
public int getMaxTrainingEpochs();
|
||||
public int getOutputSize();
|
||||
|
||||
public double computeValue(MLData input);
|
||||
public double[] computeVector(MLData input);
|
||||
|
||||
public void learn(MLDataSet trainingSet);
|
||||
public void learn(Set<List<MLDataPair>> trainingSet);
|
||||
|
||||
public void load(String fileName) throws IOException;
|
||||
public void reset();
|
||||
public void reset(int seed);
|
||||
public void save(String fileName) throws IOException;
|
||||
public void setMaxTrainingEpochs(int max);
|
||||
}
|
||||
@@ -1,15 +0,0 @@
|
||||
package net.woodyfolsom.msproj.ann;
|
||||
|
||||
import org.neuroph.core.NeuralNetwork;
|
||||
import org.neuroph.core.learning.SupervisedTrainingElement;
|
||||
import org.neuroph.core.learning.TrainingSet;
|
||||
|
||||
public interface NeuralNetLearner {
|
||||
void learn(TrainingSet<SupervisedTrainingElement> trainingSet);
|
||||
|
||||
void reset();
|
||||
|
||||
NeuralNetwork getNeuralNetwork();
|
||||
|
||||
void setNeuralNetwork(NeuralNetwork neuralNetwork);
|
||||
}
|
||||
@@ -1,98 +0,0 @@
|
||||
package net.woodyfolsom.msproj.ann;
|
||||
|
||||
import java.util.Arrays;
|
||||
|
||||
import net.woodyfolsom.msproj.GameRecord;
|
||||
import net.woodyfolsom.msproj.GameResult;
|
||||
import net.woodyfolsom.msproj.GameState;
|
||||
import net.woodyfolsom.msproj.Player;
|
||||
|
||||
import org.neuroph.core.learning.SupervisedTrainingElement;
|
||||
import org.neuroph.core.learning.TrainingSet;
|
||||
|
||||
public class PassData {
|
||||
public enum DATA_TYPE { TRAINING, TEST, VALIDATION };
|
||||
|
||||
public String[] inputs = { "BlackScore", "WhiteScore" };
|
||||
public String[] outputs = { "BlackWins", "WhiteWins" };
|
||||
|
||||
private TrainingSet<SupervisedTrainingElement> testSet;
|
||||
private TrainingSet<SupervisedTrainingElement> trainingSet;
|
||||
private TrainingSet<SupervisedTrainingElement> valSet;
|
||||
|
||||
public PassData() {
|
||||
testSet = new TrainingSet<SupervisedTrainingElement>(inputs.length, outputs.length);
|
||||
trainingSet = new TrainingSet<SupervisedTrainingElement>(inputs.length, outputs.length);
|
||||
valSet = new TrainingSet<SupervisedTrainingElement>(inputs.length, outputs.length);
|
||||
}
|
||||
|
||||
public void addData(DATA_TYPE dataType, GameRecord gameRecord) {
|
||||
GameState finalState = gameRecord.getGameState(gameRecord.getNumTurns());
|
||||
GameResult result = finalState.getResult();
|
||||
double maxScore = finalState.getGameConfig().getSize() * finalState.getGameConfig().getSize();
|
||||
|
||||
double whiteScore = Math.min(1.0, result.getWhiteScore() / maxScore);
|
||||
double blackScore = Math.min(1.0, result.getBlackScore() / maxScore);
|
||||
|
||||
double blackWinner = result.isWinner(Player.BLACK) ? 1.0 : 0.0;
|
||||
double whiteWinner = result.isWinner(Player.WHITE) ? 1.0 : 0.0;
|
||||
|
||||
addData(dataType, blackScore, whiteScore, blackWinner, whiteWinner);
|
||||
}
|
||||
|
||||
public void addData(DATA_TYPE dataType, double...data ) {
|
||||
double[] desiredInput = Arrays.copyOfRange(data,0,inputs.length);
|
||||
double[] desiredOutput = Arrays.copyOfRange(data, inputs.length, data.length);
|
||||
|
||||
switch (dataType) {
|
||||
case TEST :
|
||||
testSet.addElement(new SupervisedTrainingElement(desiredInput, desiredOutput));
|
||||
break;
|
||||
case TRAINING :
|
||||
trainingSet.addElement(new SupervisedTrainingElement(desiredInput, desiredOutput));
|
||||
System.out.println("Added training input data: " + getInput(desiredInput) + ", output data: " + getOutput(desiredOutput));
|
||||
break;
|
||||
case VALIDATION :
|
||||
valSet.addElement(new SupervisedTrainingElement(desiredInput, desiredOutput));
|
||||
break;
|
||||
default :
|
||||
throw new UnsupportedOperationException("invalid dataType " + dataType);
|
||||
}
|
||||
}
|
||||
|
||||
public String getInput(double... inputValues) {
|
||||
StringBuilder sbuilder = new StringBuilder();
|
||||
boolean first = true;
|
||||
for (int i = 0; i < outputs.length; i++) {
|
||||
if (first) {
|
||||
first = false;
|
||||
} else {
|
||||
sbuilder.append(",");
|
||||
}
|
||||
sbuilder.append(inputs[i]);
|
||||
sbuilder.append(": ");
|
||||
sbuilder.append(inputValues[i]);
|
||||
}
|
||||
return sbuilder.toString();
|
||||
}
|
||||
|
||||
public String getOutput(double... outputValues) {
|
||||
StringBuilder sbuilder = new StringBuilder();
|
||||
boolean first = true;
|
||||
for (int i = 0; i < outputs.length; i++) {
|
||||
if (first) {
|
||||
first = false;
|
||||
} else {
|
||||
sbuilder.append(",");
|
||||
}
|
||||
sbuilder.append(outputs[i]);
|
||||
sbuilder.append(": ");
|
||||
sbuilder.append(outputValues[i]);
|
||||
}
|
||||
return sbuilder.toString();
|
||||
}
|
||||
|
||||
public TrainingSet<SupervisedTrainingElement> getTrainingSet() {
|
||||
return trainingSet;
|
||||
}
|
||||
}
|
||||
@@ -1,127 +0,0 @@
|
||||
package net.woodyfolsom.msproj.ann;
|
||||
|
||||
import java.io.File;
|
||||
import java.io.FileInputStream;
|
||||
import java.io.FilenameFilter;
|
||||
import java.io.IOException;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
|
||||
import net.woodyfolsom.msproj.Action;
|
||||
import net.woodyfolsom.msproj.GameRecord;
|
||||
import net.woodyfolsom.msproj.Referee;
|
||||
import net.woodyfolsom.msproj.ann.PassData.DATA_TYPE;
|
||||
|
||||
import org.antlr.runtime.RecognitionException;
|
||||
import org.neuroph.core.NeuralNetwork;
|
||||
import org.neuroph.core.learning.SupervisedTrainingElement;
|
||||
import org.neuroph.core.learning.TrainingSet;
|
||||
import org.neuroph.nnet.MultiLayerPerceptron;
|
||||
import org.neuroph.util.TransferFunctionType;
|
||||
|
||||
public class PassLearner implements NeuralNetLearner {
|
||||
private NeuralNetwork neuralNetwork;
|
||||
|
||||
public PassLearner() {
|
||||
reset();
|
||||
}
|
||||
|
||||
private File[] getDataFiles(String dirName) {
|
||||
File file = new File(dirName);
|
||||
return file.listFiles(new FilenameFilter() {
|
||||
@Override
|
||||
public boolean accept(File dir, String name) {
|
||||
return name.toLowerCase().endsWith(".sgf");
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
new PassLearner().learnANN();
|
||||
}
|
||||
|
||||
private void learnANN() {
|
||||
List<GameRecord> parsedRecords = new ArrayList<GameRecord>();
|
||||
|
||||
for (File sgfFile : getDataFiles("data/games/random_vs_random")) {
|
||||
System.out.println("Parsing " + sgfFile.getPath() + "...");
|
||||
try {
|
||||
GameRecord gameRecord = parseSGF(sgfFile);
|
||||
while (!gameRecord.isFinished()) {
|
||||
System.out.println("Game is not finished, passing as player to move");
|
||||
gameRecord.play(gameRecord.getPlayerToMove(), Action.PASS);
|
||||
}
|
||||
parsedRecords.add(gameRecord);
|
||||
} catch (RecognitionException re) {
|
||||
re.printStackTrace();
|
||||
} catch (IOException ioe) {
|
||||
ioe.printStackTrace();
|
||||
}
|
||||
}
|
||||
|
||||
PassData passData = new PassData();
|
||||
|
||||
for (GameRecord gameRecord : parsedRecords) {
|
||||
System.out.println(gameRecord.getResult().getFullText());
|
||||
passData.addData(DATA_TYPE.TRAINING, gameRecord);
|
||||
}
|
||||
|
||||
System.out.println("PassData: ");
|
||||
System.out.println(passData);
|
||||
|
||||
learn(passData.getTrainingSet());
|
||||
|
||||
getNeuralNetwork().setInput(0.75,0.25);
|
||||
System.out.println("Output of ann(0.75,0.25): " + passData.getOutput(getNeuralNetwork().getOutput()));
|
||||
|
||||
getNeuralNetwork().setInput(0.25,0.50);
|
||||
System.out.println("Output of ann(0.50,0.99): " + passData.getOutput(getNeuralNetwork().getOutput()));
|
||||
|
||||
getNeuralNetwork().save("data/networks/Pass2.nn");
|
||||
|
||||
testNetwork(getNeuralNetwork(), passData.getTrainingSet());
|
||||
}
|
||||
|
||||
public GameRecord parseSGF(File sgfFile) throws IOException,
|
||||
RecognitionException {
|
||||
FileInputStream sgfInputStream;
|
||||
|
||||
sgfInputStream = new FileInputStream(sgfFile);
|
||||
return Referee.replay(sgfInputStream);
|
||||
}
|
||||
|
||||
@Override
|
||||
public NeuralNetwork getNeuralNetwork() {
|
||||
return neuralNetwork;
|
||||
}
|
||||
|
||||
@Override
|
||||
public void learn(TrainingSet<SupervisedTrainingElement> trainingSet) {
|
||||
this.neuralNetwork.learn(trainingSet);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void reset() {
|
||||
this.neuralNetwork = new MultiLayerPerceptron(
|
||||
TransferFunctionType.TANH, 2, 3, 2);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void setNeuralNetwork(NeuralNetwork neuralNetwork) {
|
||||
this.neuralNetwork = neuralNetwork;
|
||||
}
|
||||
|
||||
private void testNetwork(NeuralNetwork nnet, TrainingSet<SupervisedTrainingElement> trainingSet) {
|
||||
for (SupervisedTrainingElement trainingElement : trainingSet.elements()) {
|
||||
|
||||
nnet.setInput(trainingElement.getInput());
|
||||
nnet.calculate();
|
||||
double[] networkOutput = nnet.getOutput();
|
||||
System.out.print("Input: "
|
||||
+ Arrays.toString(trainingElement.getInput()));
|
||||
System.out.println(" Output: " + Arrays.toString(networkOutput));
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
484
src/net/woodyfolsom/msproj/ann/TemporalDifferenceLearning.java
Normal file
484
src/net/woodyfolsom/msproj/ann/TemporalDifferenceLearning.java
Normal file
@@ -0,0 +1,484 @@
|
||||
package net.woodyfolsom.msproj.ann;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.HashSet;
|
||||
import java.util.List;
|
||||
import java.util.Set;
|
||||
|
||||
import org.encog.EncogError;
|
||||
import org.encog.engine.network.activation.ActivationFunction;
|
||||
import org.encog.engine.network.activation.ActivationSigmoid;
|
||||
import org.encog.mathutil.IntRange;
|
||||
import org.encog.ml.MLMethod;
|
||||
import org.encog.ml.TrainingImplementationType;
|
||||
import org.encog.ml.data.MLDataPair;
|
||||
import org.encog.ml.data.MLDataSet;
|
||||
import org.encog.ml.train.MLTrain;
|
||||
import org.encog.ml.train.strategy.Strategy;
|
||||
import org.encog.ml.train.strategy.end.EndTrainingStrategy;
|
||||
import org.encog.neural.error.ErrorFunction;
|
||||
import org.encog.neural.error.LinearErrorFunction;
|
||||
import org.encog.neural.flat.FlatNetwork;
|
||||
import org.encog.neural.networks.ContainsFlat;
|
||||
import org.encog.neural.networks.training.LearningRate;
|
||||
import org.encog.neural.networks.training.Momentum;
|
||||
import org.encog.neural.networks.training.Train;
|
||||
import org.encog.neural.networks.training.TrainingError;
|
||||
import org.encog.neural.networks.training.propagation.TrainingContinuation;
|
||||
import org.encog.neural.networks.training.propagation.back.Backpropagation;
|
||||
import org.encog.neural.networks.training.strategy.SmartLearningRate;
|
||||
import org.encog.neural.networks.training.strategy.SmartMomentum;
|
||||
import org.encog.util.EncogValidate;
|
||||
import org.encog.util.EngineArray;
|
||||
import org.encog.util.concurrency.DetermineWorkload;
|
||||
import org.encog.util.concurrency.EngineConcurrency;
|
||||
import org.encog.util.concurrency.MultiThreadable;
|
||||
import org.encog.util.concurrency.TaskGroup;
|
||||
import org.encog.util.logging.EncogLogging;
|
||||
|
||||
/**
|
||||
* This class started as a verbatim copy of BackPropagation from the open-source
|
||||
* Encog framework. It was merged with its super-classes to access protected
|
||||
* fields without resorting to reflection.
|
||||
*/
|
||||
public class TemporalDifferenceLearning implements MLTrain, Momentum,
|
||||
LearningRate, Train, MultiThreadable {
|
||||
// New fields for TD(lambda)
|
||||
private final double lambda;
|
||||
// end new fields
|
||||
|
||||
// BackProp
|
||||
public static final String LAST_DELTA = "LAST_DELTA";
|
||||
private double learningRate;
|
||||
private double momentum;
|
||||
private double[] lastDelta;
|
||||
// End BackProp
|
||||
|
||||
// Propagation
|
||||
private FlatNetwork currentFlatNetwork;
|
||||
private int numThreads;
|
||||
protected double[] gradients;
|
||||
private double[] lastGradient;
|
||||
protected ContainsFlat network;
|
||||
// private MLDataSet indexable;
|
||||
private Set<List<MLDataPair>> indexable;
|
||||
private GradientWorker[] workers;
|
||||
private double totalError;
|
||||
protected double lastError;
|
||||
private Throwable reportedException;
|
||||
private double[] flatSpot;
|
||||
private boolean shouldFixFlatSpot;
|
||||
private ErrorFunction ef = new LinearErrorFunction();
|
||||
// End Propagation
|
||||
|
||||
// BasicTraining
|
||||
private final List<Strategy> strategies = new ArrayList<Strategy>();
|
||||
private Set<List<MLDataPair>> training;
|
||||
private double error;
|
||||
private int iteration;
|
||||
private TrainingImplementationType implementationType;
|
||||
|
||||
// End BasicTraining
|
||||
|
||||
public TemporalDifferenceLearning(final ContainsFlat network,
|
||||
final Set<List<MLDataPair>> training, double lambda) {
|
||||
this(network, training, 0, 0, lambda);
|
||||
addStrategy(new SmartLearningRate());
|
||||
addStrategy(new SmartMomentum());
|
||||
}
|
||||
|
||||
public TemporalDifferenceLearning(final ContainsFlat network,
|
||||
Set<List<MLDataPair>> training, final double theLearnRate,
|
||||
final double theMomentum, double lambda) {
|
||||
initPropagation(network, training);
|
||||
// TODO consider how to re-implement validation
|
||||
// ValidateNetwork.validateMethodToData(network, training);
|
||||
this.momentum = theMomentum;
|
||||
this.learningRate = theLearnRate;
|
||||
this.lastDelta = new double[network.getFlat().getWeights().length];
|
||||
this.lambda = lambda;
|
||||
}
|
||||
|
||||
private void initPropagation(final ContainsFlat network,
|
||||
final Set<List<MLDataPair>> training) {
|
||||
initBasicTraining(TrainingImplementationType.Iterative);
|
||||
this.network = network;
|
||||
this.currentFlatNetwork = network.getFlat();
|
||||
setTraining(training);
|
||||
|
||||
this.gradients = new double[this.currentFlatNetwork.getWeights().length];
|
||||
this.lastGradient = new double[this.currentFlatNetwork.getWeights().length];
|
||||
|
||||
this.indexable = training;
|
||||
this.numThreads = 0;
|
||||
this.reportedException = null;
|
||||
this.shouldFixFlatSpot = true;
|
||||
}
|
||||
|
||||
private void initBasicTraining(TrainingImplementationType implementationType) {
|
||||
this.implementationType = implementationType;
|
||||
}
|
||||
|
||||
// Methods from BackPropagation
|
||||
@Override
|
||||
public boolean canContinue() {
|
||||
return false;
|
||||
}
|
||||
|
||||
public double[] getLastDelta() {
|
||||
return this.lastDelta;
|
||||
}
|
||||
|
||||
@Override
|
||||
public double getLearningRate() {
|
||||
return this.learningRate;
|
||||
}
|
||||
|
||||
@Override
|
||||
public double getMomentum() {
|
||||
return this.momentum;
|
||||
}
|
||||
|
||||
public boolean isValidResume(final TrainingContinuation state) {
|
||||
if (!state.getContents().containsKey(Backpropagation.LAST_DELTA)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!state.getTrainingType().equals(getClass().getSimpleName())) {
|
||||
return false;
|
||||
}
|
||||
|
||||
final double[] d = (double[]) state.get(Backpropagation.LAST_DELTA);
|
||||
return d.length == ((ContainsFlat) getMethod()).getFlat().getWeights().length;
|
||||
}
|
||||
|
||||
@Override
|
||||
public TrainingContinuation pause() {
|
||||
final TrainingContinuation result = new TrainingContinuation();
|
||||
result.setTrainingType(this.getClass().getSimpleName());
|
||||
result.set(Backpropagation.LAST_DELTA, this.lastDelta);
|
||||
return result;
|
||||
}
|
||||
|
||||
@Override
|
||||
public void resume(final TrainingContinuation state) {
|
||||
if (!isValidResume(state)) {
|
||||
throw new TrainingError("Invalid training resume data length");
|
||||
}
|
||||
|
||||
this.lastDelta = ((double[]) state.get(Backpropagation.LAST_DELTA));
|
||||
}
|
||||
|
||||
@Override
|
||||
public void setLearningRate(final double rate) {
|
||||
this.learningRate = rate;
|
||||
}
|
||||
|
||||
@Override
|
||||
public void setMomentum(final double m) {
|
||||
this.momentum = m;
|
||||
}
|
||||
|
||||
public double updateWeight(final double[] gradients,
|
||||
final double[] lastGradient, final int index) {
|
||||
final double delta = (gradients[index] * this.learningRate)
|
||||
+ (this.lastDelta[index] * this.momentum);
|
||||
this.lastDelta[index] = delta;
|
||||
|
||||
System.out.println("Updating weights for connection: " + index
|
||||
+ " with lambda: " + lambda);
|
||||
|
||||
return delta;
|
||||
}
|
||||
|
||||
public void initOthers() {
|
||||
}
|
||||
|
||||
// End methods from BackPropagation
|
||||
|
||||
// Methods from Propagation
|
||||
public void finishTraining() {
|
||||
basicFinishTraining();
|
||||
}
|
||||
|
||||
public FlatNetwork getCurrentFlatNetwork() {
|
||||
return this.currentFlatNetwork;
|
||||
}
|
||||
|
||||
public MLMethod getMethod() {
|
||||
return this.network;
|
||||
}
|
||||
|
||||
public void iteration() {
|
||||
iteration(1);
|
||||
}
|
||||
|
||||
public void rollIteration() {
|
||||
this.iteration++;
|
||||
}
|
||||
|
||||
public void iteration(final int count) {
|
||||
|
||||
try {
|
||||
for (int i = 0; i < count; i++) {
|
||||
|
||||
preIteration();
|
||||
|
||||
rollIteration();
|
||||
|
||||
calculateGradients();
|
||||
|
||||
if (this.currentFlatNetwork.isLimited()) {
|
||||
learnLimited();
|
||||
} else {
|
||||
learn();
|
||||
}
|
||||
|
||||
this.lastError = this.getError();
|
||||
|
||||
for (final GradientWorker worker : this.workers) {
|
||||
EngineArray.arrayCopy(this.currentFlatNetwork.getWeights(),
|
||||
0, worker.getWeights(), 0,
|
||||
this.currentFlatNetwork.getWeights().length);
|
||||
}
|
||||
|
||||
if (this.currentFlatNetwork.getHasContext()) {
|
||||
copyContexts();
|
||||
}
|
||||
|
||||
if (this.reportedException != null) {
|
||||
throw (new EncogError(this.reportedException));
|
||||
}
|
||||
|
||||
postIteration();
|
||||
|
||||
EncogLogging.log(EncogLogging.LEVEL_INFO,
|
||||
"Training iteration done, error: " + getError());
|
||||
|
||||
}
|
||||
} catch (final ArrayIndexOutOfBoundsException ex) {
|
||||
EncogValidate.validateNetworkForTraining(this.network,
|
||||
getTraining());
|
||||
throw new EncogError(ex);
|
||||
}
|
||||
}
|
||||
|
||||
public void setThreadCount(final int numThreads) {
|
||||
this.numThreads = numThreads;
|
||||
}
|
||||
|
||||
@Override
|
||||
public int getThreadCount() {
|
||||
return this.numThreads;
|
||||
}
|
||||
|
||||
public void fixFlatSpot(boolean b) {
|
||||
this.shouldFixFlatSpot = b;
|
||||
}
|
||||
|
||||
public void setErrorFunction(ErrorFunction ef) {
|
||||
this.ef = ef;
|
||||
}
|
||||
|
||||
public void calculateGradients() {
|
||||
if (this.workers == null) {
|
||||
init();
|
||||
}
|
||||
|
||||
if (this.currentFlatNetwork.getHasContext()) {
|
||||
this.workers[0].getNetwork().clearContext();
|
||||
}
|
||||
|
||||
this.totalError = 0;
|
||||
|
||||
if (this.workers.length > 1) {
|
||||
|
||||
final TaskGroup group = EngineConcurrency.getInstance()
|
||||
.createTaskGroup();
|
||||
|
||||
for (final GradientWorker worker : this.workers) {
|
||||
EngineConcurrency.getInstance().processTask(worker, group);
|
||||
}
|
||||
|
||||
group.waitForComplete();
|
||||
} else {
|
||||
this.workers[0].run();
|
||||
}
|
||||
|
||||
this.setError(this.totalError / this.workers.length);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Copy the contexts to keep them consistent with multithreaded training.
|
||||
*/
|
||||
private void copyContexts() {
|
||||
|
||||
// copy the contexts(layer outputO from each group to the next group
|
||||
for (int i = 0; i < (this.workers.length - 1); i++) {
|
||||
final double[] src = this.workers[i].getNetwork().getLayerOutput();
|
||||
final double[] dst = this.workers[i + 1].getNetwork()
|
||||
.getLayerOutput();
|
||||
EngineArray.arrayCopy(src, dst);
|
||||
}
|
||||
|
||||
// copy the contexts from the final group to the real network
|
||||
EngineArray.arrayCopy(this.workers[this.workers.length - 1]
|
||||
.getNetwork().getLayerOutput(), this.currentFlatNetwork
|
||||
.getLayerOutput());
|
||||
}
|
||||
|
||||
private void init() {
|
||||
// fix flat spot, if needed
|
||||
this.flatSpot = new double[this.currentFlatNetwork
|
||||
.getActivationFunctions().length];
|
||||
|
||||
if (this.shouldFixFlatSpot) {
|
||||
for (int i = 0; i < this.currentFlatNetwork
|
||||
.getActivationFunctions().length; i++) {
|
||||
final ActivationFunction af = this.currentFlatNetwork
|
||||
.getActivationFunctions()[i];
|
||||
|
||||
if (af instanceof ActivationSigmoid) {
|
||||
this.flatSpot[i] = 0.1;
|
||||
} else {
|
||||
this.flatSpot[i] = 0.0;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
EngineArray.fill(this.flatSpot, 0.0);
|
||||
}
|
||||
|
||||
// setup workers
|
||||
final DetermineWorkload determine = new DetermineWorkload(
|
||||
this.numThreads, (int) this.indexable.size());
|
||||
// this.numThreads, (int) this.indexable.getRecordCount());
|
||||
|
||||
this.workers = new GradientWorker[determine.getThreadCount()];
|
||||
|
||||
int index = 0;
|
||||
|
||||
// handle CPU
|
||||
for (final IntRange r : determine.calculateWorkers()) {
|
||||
this.workers[index++] = new GradientWorker(
|
||||
this.currentFlatNetwork.clone(), this, new HashSet(
|
||||
this.indexable), r.getLow(), r.getHigh(),
|
||||
this.flatSpot, this.ef);
|
||||
}
|
||||
|
||||
initOthers();
|
||||
}
|
||||
|
||||
public void report(final double[] gradients, final double error,
|
||||
final Throwable ex) {
|
||||
synchronized (this) {
|
||||
if (ex == null) {
|
||||
|
||||
for (int i = 0; i < gradients.length; i++) {
|
||||
this.gradients[i] += gradients[i];
|
||||
}
|
||||
this.totalError += error;
|
||||
} else {
|
||||
this.reportedException = ex;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
protected void learn() {
|
||||
final double[] weights = this.currentFlatNetwork.getWeights();
|
||||
for (int i = 0; i < this.gradients.length; i++) {
|
||||
weights[i] += updateWeight(this.gradients, this.lastGradient, i);
|
||||
this.gradients[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
protected void learnLimited() {
|
||||
final double limit = this.currentFlatNetwork.getConnectionLimit();
|
||||
final double[] weights = this.currentFlatNetwork.getWeights();
|
||||
for (int i = 0; i < this.gradients.length; i++) {
|
||||
if (Math.abs(weights[i]) < limit) {
|
||||
weights[i] = 0;
|
||||
} else {
|
||||
weights[i] += updateWeight(this.gradients, this.lastGradient, i);
|
||||
}
|
||||
this.gradients[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
public double[] getLastGradient() {
|
||||
return lastGradient;
|
||||
}
|
||||
|
||||
// End methods from Propagation
|
||||
|
||||
// Methods from BasicTraining/
|
||||
public void addStrategy(final Strategy strategy) {
|
||||
strategy.init(this);
|
||||
this.strategies.add(strategy);
|
||||
}
|
||||
|
||||
public void basicFinishTraining() {
|
||||
}
|
||||
|
||||
public double getError() {
|
||||
return this.error;
|
||||
}
|
||||
|
||||
public int getIteration() {
|
||||
return this.iteration;
|
||||
}
|
||||
|
||||
public List<Strategy> getStrategies() {
|
||||
return this.strategies;
|
||||
}
|
||||
|
||||
public MLDataSet getTraining() {
|
||||
throw new UnsupportedOperationException(
|
||||
"This learning method operates on Set<List<MLData>>, not MLDataSet");
|
||||
}
|
||||
|
||||
public boolean isTrainingDone() {
|
||||
for (Strategy strategy : this.strategies) {
|
||||
if (strategy instanceof EndTrainingStrategy) {
|
||||
EndTrainingStrategy end = (EndTrainingStrategy) strategy;
|
||||
if (end.shouldStop()) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
public void postIteration() {
|
||||
for (final Strategy strategy : this.strategies) {
|
||||
strategy.postIteration();
|
||||
}
|
||||
}
|
||||
|
||||
public void preIteration() {
|
||||
|
||||
this.iteration++;
|
||||
|
||||
for (final Strategy strategy : this.strategies) {
|
||||
strategy.preIteration();
|
||||
}
|
||||
}
|
||||
|
||||
public void setError(final double error) {
|
||||
this.error = error;
|
||||
}
|
||||
|
||||
public void setIteration(final int iteration) {
|
||||
this.iteration = iteration;
|
||||
}
|
||||
|
||||
public void setTraining(final Set<List<MLDataPair>> training) {
|
||||
this.training = training;
|
||||
}
|
||||
|
||||
public TrainingImplementationType getImplementationType() {
|
||||
return this.implementationType;
|
||||
}
|
||||
// End Methods from BasicTraining
|
||||
}
|
||||
112
src/net/woodyfolsom/msproj/ann/WinFilter.java
Normal file
112
src/net/woodyfolsom/msproj/ann/WinFilter.java
Normal file
@@ -0,0 +1,112 @@
|
||||
package net.woodyfolsom.msproj.ann;
|
||||
|
||||
import java.util.List;
|
||||
import java.util.Set;
|
||||
|
||||
import net.woodyfolsom.msproj.GameState;
|
||||
import net.woodyfolsom.msproj.Player;
|
||||
|
||||
import org.encog.engine.network.activation.ActivationSigmoid;
|
||||
import org.encog.ml.data.MLData;
|
||||
import org.encog.ml.data.MLDataPair;
|
||||
import org.encog.ml.data.MLDataSet;
|
||||
import org.encog.ml.train.MLTrain;
|
||||
import org.encog.neural.networks.BasicNetwork;
|
||||
import org.encog.neural.networks.layers.BasicLayer;
|
||||
|
||||
public class WinFilter extends AbstractNeuralNetFilter implements
|
||||
NeuralNetFilter {
|
||||
|
||||
public WinFilter() {
|
||||
// create a neural network, without using a factory
|
||||
BasicNetwork network = new BasicNetwork();
|
||||
network.addLayer(new BasicLayer(null, false, 2));
|
||||
network.addLayer(new BasicLayer(new ActivationSigmoid(), true, 4));
|
||||
network.addLayer(new BasicLayer(new ActivationSigmoid(), true, 2));
|
||||
network.getStructure().finalizeStructure();
|
||||
network.reset();
|
||||
|
||||
this.neuralNetwork = network;
|
||||
}
|
||||
|
||||
@Override
|
||||
public double computeValue(MLData input) {
|
||||
if (input instanceof GameStateMLData) {
|
||||
double[] idealVector = computeVector(input);
|
||||
GameState gameState = ((GameStateMLData) input).getGameState();
|
||||
Player playerToMove = gameState.getPlayerToMove();
|
||||
if (playerToMove == Player.BLACK) {
|
||||
return idealVector[0];
|
||||
} else if (playerToMove == Player.WHITE) {
|
||||
return idealVector[1];
|
||||
} else {
|
||||
throw new RuntimeException("Invalid GameState.playerToMove: "
|
||||
+ playerToMove);
|
||||
}
|
||||
} else {
|
||||
throw new UnsupportedOperationException(
|
||||
"This NeuralNetFilter only accepts GameStates as input.");
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public double[] computeVector(MLData input) {
|
||||
if (input instanceof GameStateMLData) {
|
||||
return neuralNetwork.compute(input).getData();
|
||||
} else {
|
||||
throw new UnsupportedOperationException(
|
||||
"This NeuralNetFilter only accepts GameStates as input.");
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public void learn(MLDataSet trainingData) {
|
||||
throw new UnsupportedOperationException("This filter learns a Set<List<MLData>>, not an MLDataSet");
|
||||
}
|
||||
|
||||
@Override
|
||||
public void learn(Set<List<MLDataPair>> trainingSet) {
|
||||
|
||||
// train the neural network
|
||||
final MLTrain train = new TemporalDifferenceLearning(neuralNetwork,
|
||||
trainingSet, 0.7, 0.8, 0.25);
|
||||
|
||||
actualTrainingEpochs = 0;
|
||||
|
||||
do {
|
||||
train.iteration();
|
||||
System.out.println("Epoch #" + actualTrainingEpochs + " Error:"
|
||||
+ train.getError());
|
||||
actualTrainingEpochs++;
|
||||
} while (train.getError() > 0.01
|
||||
&& actualTrainingEpochs <= maxTrainingEpochs);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void reset() {
|
||||
neuralNetwork.reset();
|
||||
}
|
||||
|
||||
@Override
|
||||
public void reset(int seed) {
|
||||
neuralNetwork.reset(seed);
|
||||
}
|
||||
|
||||
@Override
|
||||
public BasicNetwork getNeuralNetwork() {
|
||||
// TODO Auto-generated method stub
|
||||
return null;
|
||||
}
|
||||
|
||||
@Override
|
||||
public int getInputSize() {
|
||||
// TODO Auto-generated method stub
|
||||
return 0;
|
||||
}
|
||||
|
||||
@Override
|
||||
public int getOutputSize() {
|
||||
// TODO Auto-generated method stub
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
83
src/net/woodyfolsom/msproj/ann/XORFilter.java
Normal file
83
src/net/woodyfolsom/msproj/ann/XORFilter.java
Normal file
@@ -0,0 +1,83 @@
|
||||
package net.woodyfolsom.msproj.ann;
|
||||
|
||||
import java.util.List;
|
||||
import java.util.Set;
|
||||
|
||||
import org.encog.engine.network.activation.ActivationSigmoid;
|
||||
import org.encog.ml.data.MLData;
|
||||
import org.encog.ml.data.MLDataPair;
|
||||
import org.encog.ml.data.MLDataSet;
|
||||
import org.encog.ml.data.basic.BasicMLDataSet;
|
||||
import org.encog.ml.train.MLTrain;
|
||||
import org.encog.neural.networks.BasicNetwork;
|
||||
import org.encog.neural.networks.layers.BasicLayer;
|
||||
import org.encog.neural.networks.training.propagation.back.Backpropagation;
|
||||
|
||||
/**
|
||||
* Based on sample code from http://neuroph.sourceforge.net
|
||||
*
|
||||
* @author Woody
|
||||
*
|
||||
*/
|
||||
public class XORFilter extends AbstractNeuralNetFilter implements
|
||||
NeuralNetFilter {
|
||||
|
||||
public XORFilter() {
|
||||
// create a neural network, without using a factory
|
||||
BasicNetwork network = new BasicNetwork();
|
||||
network.addLayer(new BasicLayer(null, false, 2));
|
||||
network.addLayer(new BasicLayer(new ActivationSigmoid(), true, 3));
|
||||
network.addLayer(new BasicLayer(new ActivationSigmoid(), true, 1));
|
||||
network.getStructure().finalizeStructure();
|
||||
network.reset();
|
||||
|
||||
this.neuralNetwork = network;
|
||||
}
|
||||
|
||||
@Override
|
||||
public void learn(MLDataSet trainingSet) {
|
||||
|
||||
// train the neural network
|
||||
final MLTrain train = new Backpropagation(neuralNetwork,
|
||||
trainingSet, 0.7, 0.8);
|
||||
|
||||
actualTrainingEpochs = 0;
|
||||
|
||||
do {
|
||||
train.iteration();
|
||||
System.out.println("Epoch #" + actualTrainingEpochs + " Error:"
|
||||
+ train.getError());
|
||||
actualTrainingEpochs++;
|
||||
} while (train.getError() > 0.01
|
||||
&& actualTrainingEpochs <= maxTrainingEpochs);
|
||||
}
|
||||
|
||||
@Override
|
||||
public double[] computeVector(MLData mlData) {
|
||||
MLDataSet dataset = new BasicMLDataSet(new double[][] { mlData.getData() },
|
||||
new double[][] { new double[getOutputSize()] });
|
||||
MLData output = neuralNetwork.compute(dataset.get(0).getInput());
|
||||
return output.getData();
|
||||
}
|
||||
|
||||
@Override
|
||||
public int getInputSize() {
|
||||
return 2;
|
||||
}
|
||||
|
||||
@Override
|
||||
public int getOutputSize() {
|
||||
// TODO Auto-generated method stub
|
||||
return 1;
|
||||
}
|
||||
|
||||
@Override
|
||||
public double computeValue(MLData input) {
|
||||
return computeVector(input)[0];
|
||||
}
|
||||
|
||||
@Override
|
||||
public void learn(Set<List<MLDataPair>> trainingSet) {
|
||||
throw new UnsupportedOperationException("This Filter learns an MLDataSet, not a Set<List<MLData>>.");
|
||||
}
|
||||
}
|
||||
@@ -1,42 +0,0 @@
|
||||
package net.woodyfolsom.msproj.ann;
|
||||
|
||||
import org.neuroph.core.NeuralNetwork;
|
||||
import org.neuroph.core.learning.SupervisedTrainingElement;
|
||||
import org.neuroph.core.learning.TrainingSet;
|
||||
import org.neuroph.nnet.MultiLayerPerceptron;
|
||||
import org.neuroph.util.TransferFunctionType;
|
||||
|
||||
/**
|
||||
* Based on sample code from http://neuroph.sourceforge.net
|
||||
*
|
||||
* @author Woody
|
||||
*
|
||||
*/
|
||||
public class XORLearner implements NeuralNetLearner {
|
||||
private NeuralNetwork neuralNetwork;
|
||||
|
||||
public XORLearner() {
|
||||
reset();
|
||||
}
|
||||
|
||||
@Override
|
||||
public NeuralNetwork getNeuralNetwork() {
|
||||
return neuralNetwork;
|
||||
}
|
||||
|
||||
@Override
|
||||
public void learn(TrainingSet<SupervisedTrainingElement> trainingSet) {
|
||||
this.neuralNetwork.learn(trainingSet);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void reset() {
|
||||
this.neuralNetwork = new MultiLayerPerceptron(
|
||||
TransferFunctionType.TANH, 2, 3, 1);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void setNeuralNetwork(NeuralNetwork neuralNetwork) {
|
||||
this.neuralNetwork = neuralNetwork;
|
||||
}
|
||||
}
|
||||
@@ -5,6 +5,7 @@ import java.awt.event.ActionEvent;
|
||||
import java.awt.event.ActionListener;
|
||||
import java.awt.event.WindowAdapter;
|
||||
import java.awt.event.WindowEvent;
|
||||
import java.util.concurrent.atomic.AtomicInteger;
|
||||
|
||||
import javax.swing.JButton;
|
||||
import javax.swing.JFrame;
|
||||
@@ -14,22 +15,31 @@ import net.woodyfolsom.msproj.Action;
|
||||
import net.woodyfolsom.msproj.GameConfig;
|
||||
import net.woodyfolsom.msproj.GameState;
|
||||
import net.woodyfolsom.msproj.Player;
|
||||
import net.woodyfolsom.msproj.StandAloneGame;
|
||||
import net.woodyfolsom.msproj.sfx.SfxPlayer;
|
||||
|
||||
public class Goban extends JFrame {
|
||||
|
||||
private static final long serialVersionUID = 1L;
|
||||
|
||||
private static AtomicInteger openWindows = new AtomicInteger(0);
|
||||
|
||||
private GridPanel gridPanel;
|
||||
private SfxPlayer sfxPlayer;
|
||||
|
||||
public Goban(GameConfig gameConfig, Player guiPlayer) {
|
||||
public Goban(GameConfig gameConfig, Player guiPlayer, String gameName) {
|
||||
super(gameName);
|
||||
|
||||
setLayout(new BorderLayout());
|
||||
|
||||
addWindowListener(new WindowAdapter() {
|
||||
@Override
|
||||
public void windowClosing(WindowEvent e) {
|
||||
sfxPlayer.cleanup();
|
||||
int windowsLeftOpen = openWindows.addAndGet(-1);
|
||||
if (windowsLeftOpen < 1) {
|
||||
System.exit(StandAloneGame.EXIT_USER_QUIT);
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
@@ -42,9 +52,6 @@ public class Goban extends JFrame {
|
||||
this.gridPanel = new GridPanel(gameConfig, guiPlayer, sfxPlayer);
|
||||
add(gridPanel,BorderLayout.CENTER);
|
||||
|
||||
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
|
||||
setVisible(true);
|
||||
|
||||
JButton passBtn = new JButton("Pass");
|
||||
JButton resignBtn = new JButton("Resign");
|
||||
|
||||
@@ -67,6 +74,9 @@ public class Goban extends JFrame {
|
||||
bottomPanel.add(resignBtn);
|
||||
|
||||
add(bottomPanel, BorderLayout.SOUTH);
|
||||
|
||||
setVisible(true);
|
||||
openWindows.addAndGet(1);
|
||||
pack();
|
||||
}
|
||||
|
||||
|
||||
@@ -229,7 +229,9 @@ public class GridPanel extends JPanel implements MouseListener,
|
||||
|
||||
@Override
|
||||
public void run() {
|
||||
sfxPlayer.play();
|
||||
if (sfxPlayer != null) {
|
||||
sfxPlayer.play();
|
||||
}
|
||||
}}).start();
|
||||
}
|
||||
|
||||
|
||||
@@ -13,7 +13,7 @@ import net.woodyfolsom.msproj.tree.GameTreeNode;
|
||||
import net.woodyfolsom.msproj.tree.MonteCarloProperties;
|
||||
|
||||
public abstract class MonteCarlo implements Policy {
|
||||
protected static final int ROLLOUT_DEPTH_LIMIT = 150;
|
||||
protected static final int ROLLOUT_DEPTH_LIMIT = 250;
|
||||
|
||||
protected int numStateEvaluations = 0;
|
||||
protected Policy movePolicy;
|
||||
|
||||
@@ -101,8 +101,8 @@ public class RootParallelization implements Policy {
|
||||
System.out.println("It won "
|
||||
+ bestWins + " out of " + bestSims
|
||||
+ " rollouts among " + totalRollouts
|
||||
+ " total rollouts (" + totalReward.keySet()
|
||||
+ " possible actions) from the current state.");
|
||||
+ " total rollouts (" + totalReward.size()
|
||||
+ " possible moves evaluated) from the current state.");
|
||||
|
||||
return bestAction;
|
||||
}
|
||||
|
||||
@@ -1,86 +0,0 @@
|
||||
package net.woodyfolsom.msproj.ann;
|
||||
|
||||
import java.io.File;
|
||||
import java.util.Arrays;
|
||||
|
||||
import org.junit.AfterClass;
|
||||
import org.junit.BeforeClass;
|
||||
import org.junit.Test;
|
||||
import org.neuroph.core.NeuralNetwork;
|
||||
import org.neuroph.core.learning.SupervisedTrainingElement;
|
||||
import org.neuroph.core.learning.TrainingSet;
|
||||
|
||||
public class NeuralNetLearnerTest {
|
||||
private static final String FILENAME = "myMlPerceptron.nnet";
|
||||
|
||||
@AfterClass
|
||||
public static void deleteNewNet() {
|
||||
File file = new File(FILENAME);
|
||||
if (file.exists()) {
|
||||
file.delete();
|
||||
}
|
||||
}
|
||||
|
||||
@BeforeClass
|
||||
public static void deleteSavedNet() {
|
||||
File file = new File(FILENAME);
|
||||
if (file.exists()) {
|
||||
file.delete();
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testLearnSaveLoad() {
|
||||
NeuralNetLearner nnLearner = new XORLearner();
|
||||
|
||||
// create training set (logical XOR function)
|
||||
TrainingSet<SupervisedTrainingElement> trainingSet = new TrainingSet<SupervisedTrainingElement>(
|
||||
2, 1);
|
||||
for (int x = 0; x < 1000; x++) {
|
||||
trainingSet.addElement(new SupervisedTrainingElement(new double[] { 0,
|
||||
0 }, new double[] { 0 }));
|
||||
trainingSet.addElement(new SupervisedTrainingElement(new double[] { 0,
|
||||
1 }, new double[] { 1 }));
|
||||
trainingSet.addElement(new SupervisedTrainingElement(new double[] { 1,
|
||||
0 }, new double[] { 1 }));
|
||||
trainingSet.addElement(new SupervisedTrainingElement(new double[] { 1,
|
||||
1 }, new double[] { 0 }));
|
||||
}
|
||||
|
||||
nnLearner.learn(trainingSet);
|
||||
NeuralNetwork nnet = nnLearner.getNeuralNetwork();
|
||||
|
||||
TrainingSet<SupervisedTrainingElement> valSet = new TrainingSet<SupervisedTrainingElement>(
|
||||
2, 1);
|
||||
valSet.addElement(new SupervisedTrainingElement(new double[] { 0,
|
||||
0 }, new double[] { 0 }));
|
||||
valSet.addElement(new SupervisedTrainingElement(new double[] { 0,
|
||||
1 }, new double[] { 1 }));
|
||||
valSet.addElement(new SupervisedTrainingElement(new double[] { 1,
|
||||
0 }, new double[] { 1 }));
|
||||
valSet.addElement(new SupervisedTrainingElement(new double[] { 1,
|
||||
1 }, new double[] { 0 }));
|
||||
|
||||
System.out.println("Output from eval set (learned network):");
|
||||
testNetwork(nnet, valSet);
|
||||
|
||||
nnet.save(FILENAME);
|
||||
nnet = NeuralNetwork.load(FILENAME);
|
||||
|
||||
System.out.println("Output from eval set (learned network):");
|
||||
testNetwork(nnet, valSet);
|
||||
}
|
||||
|
||||
private void testNetwork(NeuralNetwork nnet, TrainingSet<SupervisedTrainingElement> trainingSet) {
|
||||
for (SupervisedTrainingElement trainingElement : trainingSet.elements()) {
|
||||
|
||||
nnet.setInput(trainingElement.getInput());
|
||||
nnet.calculate();
|
||||
double[] networkOutput = nnet.getOutput();
|
||||
System.out.print("Input: "
|
||||
+ Arrays.toString(trainingElement.getInput()));
|
||||
System.out.println(" Output: " + Arrays.toString(networkOutput));
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,51 +0,0 @@
|
||||
package net.woodyfolsom.msproj.ann;
|
||||
|
||||
import static org.junit.Assert.assertTrue;
|
||||
|
||||
import org.junit.Test;
|
||||
import org.neuroph.core.NeuralNetwork;
|
||||
|
||||
public class PassNetworkTest {
|
||||
|
||||
@Test
|
||||
public void testSavedNetwork1() {
|
||||
NeuralNetwork passFilter = NeuralNetwork.load("data/networks/Pass1.nn");
|
||||
passFilter.setInput(0.75,0.25);
|
||||
passFilter.calculate();
|
||||
|
||||
PassData passData = new PassData();
|
||||
double[] output = passFilter.getOutput();
|
||||
System.out.println("Output: " + passData.getOutput(output));
|
||||
|
||||
assertTrue(output[0] > 0.50);
|
||||
assertTrue(output[1] < 0.50);
|
||||
|
||||
passFilter.setInput(0.25,0.50);
|
||||
passFilter.calculate();
|
||||
output = passFilter.getOutput();
|
||||
System.out.println("Output: " + passData.getOutput(output));
|
||||
assertTrue(output[0] < 0.50);
|
||||
assertTrue(output[1] > 0.50);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSavedNetwork2() {
|
||||
NeuralNetwork passFilter = NeuralNetwork.load("data/networks/Pass2.nn");
|
||||
passFilter.setInput(0.75,0.25);
|
||||
passFilter.calculate();
|
||||
|
||||
PassData passData = new PassData();
|
||||
double[] output = passFilter.getOutput();
|
||||
System.out.println("Output: " + passData.getOutput(output));
|
||||
|
||||
assertTrue(output[0] > 0.50);
|
||||
assertTrue(output[1] < 0.50);
|
||||
|
||||
passFilter.setInput(0.45,0.55);
|
||||
passFilter.calculate();
|
||||
output = passFilter.getOutput();
|
||||
System.out.println("Output: " + passData.getOutput(output));
|
||||
assertTrue(output[0] < 0.50);
|
||||
assertTrue(output[1] > 0.50);
|
||||
}
|
||||
}
|
||||
66
test/net/woodyfolsom/msproj/ann/WinFilterTest.java
Normal file
66
test/net/woodyfolsom/msproj/ann/WinFilterTest.java
Normal file
@@ -0,0 +1,66 @@
|
||||
package net.woodyfolsom.msproj.ann;
|
||||
|
||||
import java.io.File;
|
||||
import java.io.FileFilter;
|
||||
import java.io.FileInputStream;
|
||||
import java.io.IOException;
|
||||
import java.util.ArrayList;
|
||||
import java.util.HashSet;
|
||||
import java.util.List;
|
||||
import java.util.Set;
|
||||
|
||||
import net.woodyfolsom.msproj.GameRecord;
|
||||
import net.woodyfolsom.msproj.Referee;
|
||||
|
||||
import org.antlr.runtime.RecognitionException;
|
||||
import org.encog.ml.data.MLData;
|
||||
import org.encog.ml.data.MLDataPair;
|
||||
import org.junit.Test;
|
||||
|
||||
public class WinFilterTest {
|
||||
|
||||
@Test
|
||||
public void testLearnSaveLoad() throws IOException, RecognitionException {
|
||||
File[] sgfFiles = new File("data/games/random_vs_random")
|
||||
.listFiles(new FileFilter() {
|
||||
@Override
|
||||
public boolean accept(File pathname) {
|
||||
return pathname.getName().endsWith(".sgf");
|
||||
}
|
||||
});
|
||||
|
||||
Set<List<MLDataPair>> trainingData = new HashSet<List<MLDataPair>>();
|
||||
|
||||
for (File file : sgfFiles) {
|
||||
FileInputStream fis = new FileInputStream(file);
|
||||
GameRecord gameRecord = Referee.replay(fis);
|
||||
|
||||
List<MLDataPair> gameData = new ArrayList<MLDataPair>();
|
||||
for (int i = 0; i <= gameRecord.getNumTurns(); i++) {
|
||||
gameData.add(new GameStateMLDataPair(gameRecord.getGameState(i)));
|
||||
}
|
||||
|
||||
trainingData.add(gameData);
|
||||
|
||||
fis.close();
|
||||
}
|
||||
|
||||
WinFilter winFilter = new WinFilter();
|
||||
|
||||
winFilter.learn(trainingData);
|
||||
|
||||
for (List<MLDataPair> trainingSequence : trainingData) {
|
||||
//for (MLDataPair mlDataPair : trainingSequence) {
|
||||
for (int stateIndex = 0; stateIndex < trainingSequence.size(); stateIndex++) {
|
||||
if (stateIndex > 0 && stateIndex < trainingSequence.size()-1) {
|
||||
continue;
|
||||
}
|
||||
MLData input = trainingSequence.get(stateIndex).getInput();
|
||||
|
||||
System.out.println("Turn " + stateIndex + ": " + input + " => "
|
||||
+ winFilter.computeValue(input));
|
||||
}
|
||||
//}
|
||||
}
|
||||
}
|
||||
}
|
||||
79
test/net/woodyfolsom/msproj/ann/XORFilterTest.java
Normal file
79
test/net/woodyfolsom/msproj/ann/XORFilterTest.java
Normal file
@@ -0,0 +1,79 @@
|
||||
package net.woodyfolsom.msproj.ann;
|
||||
|
||||
import java.io.File;
|
||||
import java.io.IOException;
|
||||
|
||||
import org.encog.ml.data.MLDataSet;
|
||||
import org.encog.ml.data.basic.BasicMLDataSet;
|
||||
import org.junit.AfterClass;
|
||||
import org.junit.BeforeClass;
|
||||
import org.junit.Test;
|
||||
|
||||
public class XORFilterTest {
|
||||
private static final String FILENAME = "xorPerceptron.net";
|
||||
|
||||
@AfterClass
|
||||
public static void deleteNewNet() {
|
||||
File file = new File(FILENAME);
|
||||
if (file.exists()) {
|
||||
file.delete();
|
||||
}
|
||||
}
|
||||
|
||||
@BeforeClass
|
||||
public static void deleteSavedNet() {
|
||||
File file = new File(FILENAME);
|
||||
if (file.exists()) {
|
||||
file.delete();
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testLearnSaveLoad() throws IOException {
|
||||
NeuralNetFilter nnLearner = new XORFilter();
|
||||
System.out.println("Learned network after " + nnLearner.getActualTrainingEpochs() + " training epochs.");
|
||||
|
||||
// create training set (logical XOR function)
|
||||
int size = 1;
|
||||
double[][] trainingInput = new double[4 * size][];
|
||||
double[][] trainingOutput = new double[4 * size][];
|
||||
for (int i = 0; i < size; i++) {
|
||||
trainingInput[i * 4 + 0] = new double[] { 0, 0 };
|
||||
trainingInput[i * 4 + 1] = new double[] { 0, 1 };
|
||||
trainingInput[i * 4 + 2] = new double[] { 1, 0 };
|
||||
trainingInput[i * 4 + 3] = new double[] { 1, 1 };
|
||||
trainingOutput[i * 4 + 0] = new double[] { 0 };
|
||||
trainingOutput[i * 4 + 1] = new double[] { 1 };
|
||||
trainingOutput[i * 4 + 2] = new double[] { 1 };
|
||||
trainingOutput[i * 4 + 3] = new double[] { 0 };
|
||||
}
|
||||
|
||||
// create training data
|
||||
MLDataSet trainingSet = new BasicMLDataSet(trainingInput, trainingOutput);
|
||||
|
||||
nnLearner.learn(trainingSet);
|
||||
|
||||
double[][] validationSet = new double[4][2];
|
||||
|
||||
validationSet[0] = new double[] { 0, 0 };
|
||||
validationSet[1] = new double[] { 0, 1 };
|
||||
validationSet[2] = new double[] { 1, 0 };
|
||||
validationSet[3] = new double[] { 1, 1 };
|
||||
|
||||
System.out.println("Output from eval set (learned network, pre-serialization):");
|
||||
testNetwork(nnLearner, validationSet);
|
||||
|
||||
nnLearner.save(FILENAME);
|
||||
nnLearner.load(FILENAME);
|
||||
|
||||
System.out.println("Output from eval set (learned network, post-serialization):");
|
||||
testNetwork(nnLearner, validationSet);
|
||||
}
|
||||
|
||||
private void testNetwork(NeuralNetFilter nnLearner, double[][] validationSet) {
|
||||
for (int valIndex = 0; valIndex < validationSet.length; valIndex++) {
|
||||
DoublePair dp = new DoublePair(validationSet[valIndex][0],validationSet[valIndex][1]);
|
||||
System.out.println(dp + " => " + nnLearner.computeValue(dp));
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user