Implementing temporal difference learning based heavily on Encog framework.

Not functional yet - incremental update.
This commit is contained in:
2012-11-21 10:03:56 -05:00
parent 49d3b2c242
commit b723e2666e
35 changed files with 1471 additions and 470 deletions

View File

@@ -7,7 +7,6 @@
<classpathentry kind="lib" path="lib/log4j-1.2.16.jar"/>
<classpathentry kind="lib" path="lib/kgsGtp.jar"/>
<classpathentry kind="lib" path="lib/antlrworks-1.4.3.jar"/>
<classpathentry kind="lib" path="lib/neuroph-2.6.jar"/>
<classpathentry kind="lib" path="lib/encog-engine-2.5.0.jar"/>
<classpathentry kind="lib" path="lib/encog-java-core.jar" sourcepath="lib/encog-java-core-sources.jar"/>
<classpathentry kind="output" path="bin"/>
</classpath>

View File

@@ -23,7 +23,7 @@
<target name="compile" depends="init" description="compile the source ">
<!-- Compile the java code from ${src} into ${build} -->
<javac srcdir="${src}" destdir="${build}" classpathref="build.classpath" debug="true" source="1.6" target="1.6"/>
<javac includeantruntime="false" srcdir="${src}" destdir="${build}" classpathref="build.classpath" debug="true"/>
</target>
<target name="compile-test" depends="compile">
@@ -33,9 +33,25 @@
</target>
<target name="copy-resources">
<copy todir="${dist}">
<copy todir="${dist}/data">
<fileset dir="data" />
</copy>
<copy todir="${build}/net/woodyfolsom/msproj/gui">
<fileset dir="${src}/net/woodyfolsom/msproj/gui">
<exclude name="**/*.java"/>
</fileset>
</copy>
<copy todir="${build}/net/woodyfolsom/msproj/sfx">
<fileset dir="${src}/net/woodyfolsom/msproj/sfx">
<exclude name="**/*.java"/>
</fileset>
</copy>
</target>
<target name="copy-libs">
<copy todir="${dist}/lib">
<fileset dir="lib" />
</copy>
</target>
<target name="clean" description="clean up">
@@ -44,12 +60,12 @@
<delete dir="${dist}" />
</target>
<target name="dist" depends="compile,copy-resources" description="generate the distribution">
<target name="dist" depends="compile,copy-resources,copy-libs" description="generate the distribution">
<jar jarfile="${dist}/GoGame.jar">
<fileset dir="${build}" excludes="**/*Test.class" />
<manifest>
<attribute name="Main-Class" value="net.woodyfolsom.msproj.GoGame" />
<attribute name="Class-Path" value="kgsGtp.jar log4j-1.2.16.jar"/>
<attribute name="Main-Class" value="net.woodyfolsom.msproj.StandAloneGame" />
<attribute name="Class-Path" value="lib/kgsGtp.jar lib/log4j-1.2.16.jar lib/antlrworks-1.4.3.jar lib/encog-engine-2.5.0.jar lib/neuroph-2.6.jar"/>
</manifest>
</jar>
</target>

View File

@@ -1,7 +1,10 @@
PlayerOne=ROOT_PAR
PlayerOne=RANDOM
PlayerTwo=RANDOM
GUIDelay=2000 //1 second
GUIDelay=1000 //1 second
BoardSize=9
Komi=6.5
NumGames=10 //Games for each player
TurnTime=2000 //seconds per player per turn
NumGames=1000 //Games for each color per player
TurnTime=1000 //seconds per player per turn
SpectatorBoardShown=false;
WhiteMoveLogged=false;
BlackMoveLogged=false;

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
lib/encog-java-core.jar Normal file

Binary file not shown.

Binary file not shown.

View File

@@ -23,6 +23,16 @@ public class GameRecord {
moves.add(Action.NONE);
}
public GameRecord(GameRecord that) {
for(GameState gameState : that.gameStates) {
gameStates.add(new GameState(gameState));
}
//initial 'move' of Action.NONE allows for a game that starts with a board setup
for (Action action : that.moves) {
moves.add(action);
}
}
/**
* Adds a comment for the current turn.
* @param comment

View File

@@ -13,6 +13,9 @@ public class GameSettings {
private int boardSize = 9;
private double komi = 6.5;
private int numGames = 10;
private boolean spectatorBoardShown = false;
private boolean whiteMoveLogged = true;
private boolean blackMoveLogged = true;
private GameSettings() {
}
@@ -49,6 +52,12 @@ public class GameSettings {
gameSettings.setNumGames(Integer.parseInt(value));
} else if ("Komi".equals(name)) {
gameSettings.setKomi(Double.parseDouble(value));
} else if ("SpectatorBoardShown".equals(name)) {
gameSettings.setSpectatorBoardShown(Boolean.parseBoolean(value));
} else if ("WhiteMoveLogged".equals(name)) {
gameSettings.setWhiteMoveLogged(Boolean.parseBoolean(value));
} else if ("BlackMoveLogged".equals(name)) {
gameSettings.setBlackMoveLogged(Boolean.parseBoolean(value));
} else {
System.out.println("Ignoring game settings property with unrecognized name: " + name);
}
@@ -127,4 +136,29 @@ public class GameSettings {
sb.append(", GUIDelay=" + guiDelay);
return sb.toString();
}
public boolean isSpectatorBoardShown() {
return spectatorBoardShown;
}
private void setSpectatorBoardShown(boolean spectatorBoardShown) {
this.spectatorBoardShown = spectatorBoardShown;
}
public boolean isWhiteMoveLogged() {
return whiteMoveLogged;
}
private void setWhiteMoveLogged(boolean whiteMoveLogged) {
this.whiteMoveLogged = whiteMoveLogged;
}
public boolean isBlackMoveLogged() {
return blackMoveLogged;
}
private void setBlackMoveLogged(boolean blackMoveLogged) {
this.blackMoveLogged = blackMoveLogged;
}
}

View File

@@ -4,8 +4,6 @@ import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.text.DateFormat;
import java.text.SimpleDateFormat;
import net.woodyfolsom.msproj.gui.Goban;
import net.woodyfolsom.msproj.policy.HumanGuiInput;
@@ -65,10 +63,11 @@ public class Referee {
return gameRecord;
}
public GameResult play(GameConfig gameConfig, int gameNo) {
public GameResult play(GameConfig gameConfig, int gameNo,
boolean showSpectatorBoard, boolean logGameRecord) {
GameRecord gameRecord = new GameRecord(gameConfig);
System.out.println("Game started.");
//System.out.println("Game started.");
GameState initialGameState = gameRecord.getGameState(gameRecord
.getNumTurns());
@@ -78,13 +77,14 @@ public class Referee {
whitePolicy.setState(initialGameState);
Goban spectatorBoard;
if (blackPolicy instanceof HumanGuiInput
|| whitePolicy instanceof HumanGuiInput) {
if (blackPolicy instanceof HumanGuiInput || whitePolicy instanceof HumanGuiInput) {
System.out.println("Human is controlling the game board GUI.");
spectatorBoard = null;
} else {
} else if (showSpectatorBoard){
System.out.println("Starting game board GUI in spectator mode.");
spectatorBoard = new Goban(gameConfig, null);
spectatorBoard = new Goban(gameConfig, null, "Game #" + gameNo);
} else { // else showing spectator board is disabled
spectatorBoard = null;
}
try {
@@ -122,6 +122,7 @@ public class Referee {
// DateFormat dateFormat = new SimpleDateFormat("yyMMddHHmmssZ");
if (logGameRecord) {
try {
// File sgfFile = new File("gogame-" + dateFormat.format(new Date())
@@ -143,8 +144,9 @@ public class Referee {
System.out.println("Unable to save game file due to IOException: "
+ ioe.getMessage());
}
}
System.out.println("Game finished.");
//System.out.println("Game finished.");
return result;
}

View File

@@ -19,8 +19,9 @@ import net.woodyfolsom.msproj.policy.RandomMovePolicy;
import net.woodyfolsom.msproj.policy.RootParallelization;
public class StandAloneGame {
private static final int EXIT_NOMINAL = 0;
private static final int EXIT_IO_EXCEPTION = 1;
public static final int EXIT_USER_QUIT = 1;
public static final int EXIT_NOMINAL = 0;
public static final int EXIT_IO_EXCEPTION = -1;
private int gameNo = 0;
@@ -38,7 +39,9 @@ public class StandAloneGame {
parsePlayerType(gameSettings.getPlayerOne()),
parsePlayerType(gameSettings.getPlayerTwo()),
gameSettings.getBoardSize(), gameSettings.getKomi(),
gameSettings.getNumGames(), gameSettings.getTurnTime());
gameSettings.getNumGames(), gameSettings.getTurnTime(),
gameSettings.isSpectatorBoardShown(),
gameSettings.isBlackMoveLogged(), gameSettings.isWhiteMoveLogged());
} catch (IOException ioe) {
ioe.printStackTrace();
System.exit(EXIT_IO_EXCEPTION);
@@ -65,7 +68,8 @@ public class StandAloneGame {
}
public void playGame(PLAYER_TYPE playerType1, PLAYER_TYPE playerType2,
int size, double komi, int rounds, long turnLength) {
int size, double komi, int rounds, long turnLength, boolean showSpectatorBoard,
boolean blackMoveLogged, boolean whiteMoveLogged) {
long startTime = System.currentTimeMillis();
@@ -74,32 +78,31 @@ public class StandAloneGame {
Referee referee = new Referee();
referee.setPolicy(Player.BLACK,
getPolicy(playerType1, gameConfig, Player.BLACK, turnLength));
getPolicy(playerType1, gameConfig, Player.BLACK, turnLength, blackMoveLogged));
referee.setPolicy(Player.WHITE,
getPolicy(playerType2, gameConfig, Player.WHITE, turnLength));
getPolicy(playerType2, gameConfig, Player.WHITE, turnLength, whiteMoveLogged));
List<GameResult> round1results = new ArrayList<GameResult>();
boolean logGameRecords = rounds <= 50;
for (int round = 0; round < rounds; round++) {
gameNo++;
round1results.add(referee.play(gameConfig, gameNo));
round1results.add(referee.play(gameConfig, gameNo, showSpectatorBoard, logGameRecords));
}
List<GameResult> round2results = new ArrayList<GameResult>();
referee.setPolicy(Player.BLACK,
getPolicy(playerType2, gameConfig, Player.BLACK, turnLength));
getPolicy(playerType2, gameConfig, Player.BLACK, turnLength, blackMoveLogged));
referee.setPolicy(Player.WHITE,
getPolicy(playerType1, gameConfig, Player.WHITE, turnLength));
getPolicy(playerType1, gameConfig, Player.WHITE, turnLength, whiteMoveLogged));
for (int round = 0; round < rounds; round++) {
gameNo++;
round2results.add(referee.play(gameConfig, gameNo));
round2results.add(referee.play(gameConfig, gameNo, showSpectatorBoard, logGameRecords));
}
long endTime = System.currentTimeMillis();
DateFormat dateFormat = new SimpleDateFormat("yyMMddHHmmss");
try {
File txtFile = new File("gotournament-"
@@ -107,14 +110,16 @@ public class StandAloneGame {
FileWriter writer = new FileWriter(txtFile);
try {
if (!logGameRecords) {
System.out.println("Each player is set to play more than 50 rounds as each color; omitting individual game .sgf log file output.");
}
logResults(writer, round1results, playerType1.toString(),
playerType2.toString());
logResults(writer, round2results, playerType2.toString(),
playerType1.toString());
writer.write("Elapsed Time: " + (endTime - startTime) / 1000.0
+ " seconds.");
System.out.println("Game tournament saved as "
+ txtFile.getAbsolutePath());
} finally {
@@ -149,19 +154,19 @@ public class StandAloneGame {
}
private Policy getPolicy(PLAYER_TYPE playerType, GameConfig gameConfig,
Player player, long turnLength) {
Player player, long turnLength, boolean moveLogged) {
switch (playerType) {
case HUMAN:
return new HumanKeyboardInput();
case HUMAN_GUI:
return new HumanGuiInput(new Goban(gameConfig, player));
return new HumanGuiInput(new Goban(gameConfig, player,""));
case ROOT_PAR:
return new RootParallelization(4, turnLength);
case UCT:
return new MonteCarloUCT(new RandomMovePolicy(), turnLength);
case RANDOM:
RandomMovePolicy randomMovePolicy = new RandomMovePolicy();
randomMovePolicy.setLogging(true);
randomMovePolicy.setLogging(moveLogged);
return randomMovePolicy;
case RAVE:
return new MonteCarloAMAF(new RandomMovePolicy(), turnLength);

View File

@@ -0,0 +1,54 @@
package net.woodyfolsom.msproj.ann;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import org.encog.neural.networks.BasicNetwork;
import org.encog.neural.networks.PersistBasicNetwork;
public abstract class AbstractNeuralNetFilter implements NeuralNetFilter {
protected BasicNetwork neuralNetwork;
protected int actualTrainingEpochs = 0;
protected int maxTrainingEpochs = 1000;
public int getActualTrainingEpochs() {
return actualTrainingEpochs;
}
public int getMaxTrainingEpochs() {
return maxTrainingEpochs;
}
@Override
public BasicNetwork getNeuralNetwork() {
return neuralNetwork;
}
public void load(String filename) throws IOException {
FileInputStream fis = new FileInputStream(new File(filename));
neuralNetwork = (BasicNetwork) new PersistBasicNetwork().read(fis);
fis.close();
}
@Override
public void reset() {
neuralNetwork.reset();
}
@Override
public void reset(int seed) {
neuralNetwork.reset(seed);
}
public void save(String filename) throws IOException {
FileOutputStream fos = new FileOutputStream(new File(filename));
new PersistBasicNetwork().save(fos, getNeuralNetwork());
fos.close();
}
public void setMaxTrainingEpochs(int max) {
this.maxTrainingEpochs = max;
}
}

View File

@@ -0,0 +1,17 @@
package net.woodyfolsom.msproj.ann;
import org.encog.ml.data.basic.BasicMLData;
public class DoublePair extends BasicMLData {
// private final double x;
// private final double y;
/**
*
*/
private static final long serialVersionUID = 1L;
public DoublePair(double x, double y) {
super(new double[] { x, y });
}
}

View File

@@ -0,0 +1,95 @@
package net.woodyfolsom.msproj.ann;
import org.encog.mathutil.error.ErrorCalculationMode;
/*
Initial erison of this class was a verbatim copy from Encog framework.
*/
public class ErrorCalculation {
private static ErrorCalculationMode mode = ErrorCalculationMode.MSE;
public static ErrorCalculationMode getMode() {
return ErrorCalculation.mode;
}
public static void setMode(final ErrorCalculationMode theMode) {
ErrorCalculation.mode = theMode;
}
private double globalError;
private int setSize;
public final double calculate() {
if (this.setSize == 0) {
return 0;
}
switch (ErrorCalculation.getMode()) {
case RMS:
return calculateRMS();
case MSE:
return calculateMSE();
case ESS:
return calculateESS();
default:
return calculateMSE();
}
}
public final double calculateMSE() {
if (this.setSize == 0) {
return 0;
}
final double err = this.globalError / this.setSize;
return err;
}
public final double calculateESS() {
if (this.setSize == 0) {
return 0;
}
final double err = this.globalError / 2;
return err;
}
public final double calculateRMS() {
if (this.setSize == 0) {
return 0;
}
final double err = Math.sqrt(this.globalError / this.setSize);
return err;
}
public final void reset() {
this.globalError = 0;
this.setSize = 0;
}
public final void updateError(final double actual, final double ideal) {
double delta = ideal - actual;
this.globalError += delta * delta;
this.setSize++;
}
public final void updateError(final double[] actual, final double[] ideal,
final double significance) {
for (int i = 0; i < actual.length; i++) {
double delta = (ideal[i] - actual[i]) * significance;
this.globalError += delta * delta;
}
this.setSize += ideal.length;
}
}

View File

@@ -0,0 +1,25 @@
package net.woodyfolsom.msproj.ann;
import net.woodyfolsom.msproj.GameState;
import org.encog.ml.data.basic.BasicMLData;
public class GameStateMLData extends BasicMLData {
/**
*
*/
private static final long serialVersionUID = 1L;
private GameState gameState;
public GameStateMLData(double[] d, GameState gameState) {
super(d);
// TODO Auto-generated constructor stub
this.gameState = gameState;
}
public GameState getGameState() {
return gameState;
}
}

View File

@@ -0,0 +1,121 @@
package net.woodyfolsom.msproj.ann;
import net.woodyfolsom.msproj.GameResult;
import net.woodyfolsom.msproj.GameState;
import net.woodyfolsom.msproj.Player;
import org.encog.ml.data.MLData;
import org.encog.ml.data.MLDataPair;
import org.encog.ml.data.basic.BasicMLData;
import org.encog.ml.data.basic.BasicMLDataPair;
import org.encog.util.kmeans.Centroid;
public class GameStateMLDataPair implements MLDataPair {
//private final String[] inputs = { "BlackScore", "WhiteScore" };
//private final String[] outputs = { "BlackWins", "WhiteWins" };
private BasicMLDataPair mlDataPairDelegate;
private GameState gameState;
public GameStateMLDataPair(GameState gameState) {
this.gameState = gameState;
mlDataPairDelegate = new BasicMLDataPair(
new GameStateMLData(createInput(), gameState), new BasicMLData(createIdeal()));
}
public GameStateMLDataPair(GameStateMLDataPair that) {
this.gameState = new GameState(that.gameState);
mlDataPairDelegate = new BasicMLDataPair(
that.mlDataPairDelegate.getInput(),
that.mlDataPairDelegate.getIdeal());
}
@Override
public MLDataPair clone() {
return new GameStateMLDataPair(this);
}
@Override
public Centroid<MLDataPair> createCentroid() {
return mlDataPairDelegate.createCentroid();
}
/**
* Creates a vector of normalized scores from GameState.
*
* @return
*/
private double[] createInput() {
GameResult result = gameState.getResult();
double maxScore = gameState.getGameConfig().getSize()
* gameState.getGameConfig().getSize();
double whiteScore = Math.min(1.0, result.getWhiteScore() / maxScore);
double blackScore = Math.min(1.0, result.getBlackScore() / maxScore);
return new double[] { blackScore, whiteScore };
}
/**
* Creates a vector of values indicating strength of black/white win output
* from network.
*
* @return
*/
private double[] createIdeal() {
GameResult result = gameState.getResult();
double blackWinner = result.isWinner(Player.BLACK) ? 1.0 : 0.0;
double whiteWinner = result.isWinner(Player.WHITE) ? 1.0 : 0.0;
return new double[] { blackWinner, whiteWinner };
}
@Override
public MLData getIdeal() {
return mlDataPairDelegate.getIdeal();
}
@Override
public double[] getIdealArray() {
return mlDataPairDelegate.getIdealArray();
}
@Override
public MLData getInput() {
return mlDataPairDelegate.getInput();
}
@Override
public double[] getInputArray() {
return mlDataPairDelegate.getInputArray();
}
@Override
public double getSignificance() {
return mlDataPairDelegate.getSignificance();
}
@Override
public boolean isSupervised() {
return mlDataPairDelegate.isSupervised();
}
@Override
public void setIdealArray(double[] arg0) {
mlDataPairDelegate.setIdealArray(arg0);
}
@Override
public void setInputArray(double[] arg0) {
mlDataPairDelegate.setInputArray(arg0);
}
@Override
public void setSignificance(double arg0) {
mlDataPairDelegate.setSignificance(arg0);
}
}

View File

@@ -0,0 +1,172 @@
package net.woodyfolsom.msproj.ann;
/*
* Class copied verbatim from Encog framework due to dependency on Propagation
* implementation.
*
* Encog(tm) Core v3.2 - Java Version
* http://www.heatonresearch.com/encog/
* http://code.google.com/p/encog-java/
* Copyright 2008-2012 Heaton Research, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* For more information on Heaton Research copyrights, licenses
* and trademarks visit:
* http://www.heatonresearch.com/copyright
*/
import java.util.List;
import java.util.Set;
import org.encog.engine.network.activation.ActivationFunction;
import org.encog.ml.data.MLDataPair;
import org.encog.ml.data.MLDataSet;
import org.encog.ml.data.basic.BasicMLDataPair;
import org.encog.neural.error.ErrorFunction;
import org.encog.neural.flat.FlatNetwork;
import org.encog.util.EngineArray;
import org.encog.util.concurrency.EngineTask;
public class GradientWorker implements EngineTask {
private final FlatNetwork network;
private final ErrorCalculation errorCalculation = new ErrorCalculation();
private final double[] actual;
private final double[] layerDelta;
private final int[] layerCounts;
private final int[] layerFeedCounts;
private final int[] layerIndex;
private final int[] weightIndex;
private final double[] layerOutput;
private final double[] layerSums;
private final double[] gradients;
private final double[] weights;
private final MLDataPair pair;
private final Set<List<MLDataPair>> training;
private final int low;
private final int high;
private final TemporalDifferenceLearning owner;
private double[] flatSpot;
private final ErrorFunction errorFunction;
public GradientWorker(final FlatNetwork theNetwork,
final TemporalDifferenceLearning theOwner,
final Set<List<MLDataPair>> theTraining, final int theLow,
final int theHigh, final double[] flatSpot,
ErrorFunction ef) {
this.network = theNetwork;
this.training = theTraining;
this.low = theLow;
this.high = theHigh;
this.owner = theOwner;
this.flatSpot = flatSpot;
this.errorFunction = ef;
this.layerDelta = new double[network.getLayerOutput().length];
this.gradients = new double[network.getWeights().length];
this.actual = new double[network.getOutputCount()];
this.weights = network.getWeights();
this.layerIndex = network.getLayerIndex();
this.layerCounts = network.getLayerCounts();
this.weightIndex = network.getWeightIndex();
this.layerOutput = network.getLayerOutput();
this.layerSums = network.getLayerSums();
this.layerFeedCounts = network.getLayerFeedCounts();
this.pair = BasicMLDataPair.createPair(network.getInputCount(), network
.getOutputCount());
}
public FlatNetwork getNetwork() {
return this.network;
}
public double[] getWeights() {
return this.weights;
}
private void process(final double[] input, final double[] ideal, double s) {
this.network.compute(input, this.actual);
this.errorCalculation.updateError(this.actual, ideal, s);
this.errorFunction.calculateError(ideal, actual, this.layerDelta);
for (int i = 0; i < this.actual.length; i++) {
this.layerDelta[i] = ((this.network.getActivationFunctions()[0]
.derivativeFunction(this.layerSums[i],this.layerOutput[i]) + this.flatSpot[0]))
* (this.layerDelta[i] * s);
}
for (int i = this.network.getBeginTraining(); i < this.network
.getEndTraining(); i++) {
processLevel(i);
}
}
private void processLevel(final int currentLevel) {
final int fromLayerIndex = this.layerIndex[currentLevel + 1];
final int toLayerIndex = this.layerIndex[currentLevel];
final int fromLayerSize = this.layerCounts[currentLevel + 1];
final int toLayerSize = this.layerFeedCounts[currentLevel];
final int index = this.weightIndex[currentLevel];
final ActivationFunction activation = this.network
.getActivationFunctions()[currentLevel];
final double currentFlatSpot = this.flatSpot[currentLevel + 1];
// handle weights
int yi = fromLayerIndex;
for (int y = 0; y < fromLayerSize; y++) {
final double output = this.layerOutput[yi];
double sum = 0;
int xi = toLayerIndex;
int wi = index + y;
for (int x = 0; x < toLayerSize; x++) {
this.gradients[wi] += output * this.layerDelta[xi];
sum += this.weights[wi] * this.layerDelta[xi];
wi += fromLayerSize;
xi++;
}
this.layerDelta[yi] = sum
* (activation.derivativeFunction(this.layerSums[yi],this.layerOutput[yi])+currentFlatSpot);
yi++;
}
}
public final void run() {
try {
this.errorCalculation.reset();
//for (int i = this.low; i <= this.high; i++) {
for (List<MLDataPair> trainingSequence : training) {
MLDataPair mldp = trainingSequence.get(trainingSequence.size()-1);
this.pair.setInputArray(mldp.getInputArray());
if (this.pair.getIdealArray() != null) {
this.pair.setIdealArray(mldp.getIdealArray());
}
//this.training.getRecord(i, this.pair);
process(this.pair.getInputArray(), this.pair.getIdealArray(),pair.getSignificance());
}
//}
final double error = this.errorCalculation.calculate();
this.owner.report(this.gradients, error, null);
EngineArray.fill(this.gradients, 0);
} catch (final Throwable ex) {
this.owner.report(null, 0, ex);
}
}
}

View File

@@ -0,0 +1,31 @@
package net.woodyfolsom.msproj.ann;
import java.io.IOException;
import java.util.List;
import java.util.Set;
import org.encog.ml.data.MLData;
import org.encog.ml.data.MLDataPair;
import org.encog.ml.data.MLDataSet;
import org.encog.neural.networks.BasicNetwork;
public interface NeuralNetFilter {
BasicNetwork getNeuralNetwork();
public int getActualTrainingEpochs();
public int getInputSize();
public int getMaxTrainingEpochs();
public int getOutputSize();
public double computeValue(MLData input);
public double[] computeVector(MLData input);
public void learn(MLDataSet trainingSet);
public void learn(Set<List<MLDataPair>> trainingSet);
public void load(String fileName) throws IOException;
public void reset();
public void reset(int seed);
public void save(String fileName) throws IOException;
public void setMaxTrainingEpochs(int max);
}

View File

@@ -1,15 +0,0 @@
package net.woodyfolsom.msproj.ann;
import org.neuroph.core.NeuralNetwork;
import org.neuroph.core.learning.SupervisedTrainingElement;
import org.neuroph.core.learning.TrainingSet;
public interface NeuralNetLearner {
void learn(TrainingSet<SupervisedTrainingElement> trainingSet);
void reset();
NeuralNetwork getNeuralNetwork();
void setNeuralNetwork(NeuralNetwork neuralNetwork);
}

View File

@@ -1,98 +0,0 @@
package net.woodyfolsom.msproj.ann;
import java.util.Arrays;
import net.woodyfolsom.msproj.GameRecord;
import net.woodyfolsom.msproj.GameResult;
import net.woodyfolsom.msproj.GameState;
import net.woodyfolsom.msproj.Player;
import org.neuroph.core.learning.SupervisedTrainingElement;
import org.neuroph.core.learning.TrainingSet;
public class PassData {
public enum DATA_TYPE { TRAINING, TEST, VALIDATION };
public String[] inputs = { "BlackScore", "WhiteScore" };
public String[] outputs = { "BlackWins", "WhiteWins" };
private TrainingSet<SupervisedTrainingElement> testSet;
private TrainingSet<SupervisedTrainingElement> trainingSet;
private TrainingSet<SupervisedTrainingElement> valSet;
public PassData() {
testSet = new TrainingSet<SupervisedTrainingElement>(inputs.length, outputs.length);
trainingSet = new TrainingSet<SupervisedTrainingElement>(inputs.length, outputs.length);
valSet = new TrainingSet<SupervisedTrainingElement>(inputs.length, outputs.length);
}
public void addData(DATA_TYPE dataType, GameRecord gameRecord) {
GameState finalState = gameRecord.getGameState(gameRecord.getNumTurns());
GameResult result = finalState.getResult();
double maxScore = finalState.getGameConfig().getSize() * finalState.getGameConfig().getSize();
double whiteScore = Math.min(1.0, result.getWhiteScore() / maxScore);
double blackScore = Math.min(1.0, result.getBlackScore() / maxScore);
double blackWinner = result.isWinner(Player.BLACK) ? 1.0 : 0.0;
double whiteWinner = result.isWinner(Player.WHITE) ? 1.0 : 0.0;
addData(dataType, blackScore, whiteScore, blackWinner, whiteWinner);
}
public void addData(DATA_TYPE dataType, double...data ) {
double[] desiredInput = Arrays.copyOfRange(data,0,inputs.length);
double[] desiredOutput = Arrays.copyOfRange(data, inputs.length, data.length);
switch (dataType) {
case TEST :
testSet.addElement(new SupervisedTrainingElement(desiredInput, desiredOutput));
break;
case TRAINING :
trainingSet.addElement(new SupervisedTrainingElement(desiredInput, desiredOutput));
System.out.println("Added training input data: " + getInput(desiredInput) + ", output data: " + getOutput(desiredOutput));
break;
case VALIDATION :
valSet.addElement(new SupervisedTrainingElement(desiredInput, desiredOutput));
break;
default :
throw new UnsupportedOperationException("invalid dataType " + dataType);
}
}
public String getInput(double... inputValues) {
StringBuilder sbuilder = new StringBuilder();
boolean first = true;
for (int i = 0; i < outputs.length; i++) {
if (first) {
first = false;
} else {
sbuilder.append(",");
}
sbuilder.append(inputs[i]);
sbuilder.append(": ");
sbuilder.append(inputValues[i]);
}
return sbuilder.toString();
}
public String getOutput(double... outputValues) {
StringBuilder sbuilder = new StringBuilder();
boolean first = true;
for (int i = 0; i < outputs.length; i++) {
if (first) {
first = false;
} else {
sbuilder.append(",");
}
sbuilder.append(outputs[i]);
sbuilder.append(": ");
sbuilder.append(outputValues[i]);
}
return sbuilder.toString();
}
public TrainingSet<SupervisedTrainingElement> getTrainingSet() {
return trainingSet;
}
}

View File

@@ -1,127 +0,0 @@
package net.woodyfolsom.msproj.ann;
import java.io.File;
import java.io.FileInputStream;
import java.io.FilenameFilter;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import net.woodyfolsom.msproj.Action;
import net.woodyfolsom.msproj.GameRecord;
import net.woodyfolsom.msproj.Referee;
import net.woodyfolsom.msproj.ann.PassData.DATA_TYPE;
import org.antlr.runtime.RecognitionException;
import org.neuroph.core.NeuralNetwork;
import org.neuroph.core.learning.SupervisedTrainingElement;
import org.neuroph.core.learning.TrainingSet;
import org.neuroph.nnet.MultiLayerPerceptron;
import org.neuroph.util.TransferFunctionType;
public class PassLearner implements NeuralNetLearner {
private NeuralNetwork neuralNetwork;
public PassLearner() {
reset();
}
private File[] getDataFiles(String dirName) {
File file = new File(dirName);
return file.listFiles(new FilenameFilter() {
@Override
public boolean accept(File dir, String name) {
return name.toLowerCase().endsWith(".sgf");
}
});
}
public static void main(String[] args) {
new PassLearner().learnANN();
}
private void learnANN() {
List<GameRecord> parsedRecords = new ArrayList<GameRecord>();
for (File sgfFile : getDataFiles("data/games/random_vs_random")) {
System.out.println("Parsing " + sgfFile.getPath() + "...");
try {
GameRecord gameRecord = parseSGF(sgfFile);
while (!gameRecord.isFinished()) {
System.out.println("Game is not finished, passing as player to move");
gameRecord.play(gameRecord.getPlayerToMove(), Action.PASS);
}
parsedRecords.add(gameRecord);
} catch (RecognitionException re) {
re.printStackTrace();
} catch (IOException ioe) {
ioe.printStackTrace();
}
}
PassData passData = new PassData();
for (GameRecord gameRecord : parsedRecords) {
System.out.println(gameRecord.getResult().getFullText());
passData.addData(DATA_TYPE.TRAINING, gameRecord);
}
System.out.println("PassData: ");
System.out.println(passData);
learn(passData.getTrainingSet());
getNeuralNetwork().setInput(0.75,0.25);
System.out.println("Output of ann(0.75,0.25): " + passData.getOutput(getNeuralNetwork().getOutput()));
getNeuralNetwork().setInput(0.25,0.50);
System.out.println("Output of ann(0.50,0.99): " + passData.getOutput(getNeuralNetwork().getOutput()));
getNeuralNetwork().save("data/networks/Pass2.nn");
testNetwork(getNeuralNetwork(), passData.getTrainingSet());
}
public GameRecord parseSGF(File sgfFile) throws IOException,
RecognitionException {
FileInputStream sgfInputStream;
sgfInputStream = new FileInputStream(sgfFile);
return Referee.replay(sgfInputStream);
}
@Override
public NeuralNetwork getNeuralNetwork() {
return neuralNetwork;
}
@Override
public void learn(TrainingSet<SupervisedTrainingElement> trainingSet) {
this.neuralNetwork.learn(trainingSet);
}
@Override
public void reset() {
this.neuralNetwork = new MultiLayerPerceptron(
TransferFunctionType.TANH, 2, 3, 2);
}
@Override
public void setNeuralNetwork(NeuralNetwork neuralNetwork) {
this.neuralNetwork = neuralNetwork;
}
private void testNetwork(NeuralNetwork nnet, TrainingSet<SupervisedTrainingElement> trainingSet) {
for (SupervisedTrainingElement trainingElement : trainingSet.elements()) {
nnet.setInput(trainingElement.getInput());
nnet.calculate();
double[] networkOutput = nnet.getOutput();
System.out.print("Input: "
+ Arrays.toString(trainingElement.getInput()));
System.out.println(" Output: " + Arrays.toString(networkOutput));
}
}
}

View File

@@ -0,0 +1,484 @@
package net.woodyfolsom.msproj.ann;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import org.encog.EncogError;
import org.encog.engine.network.activation.ActivationFunction;
import org.encog.engine.network.activation.ActivationSigmoid;
import org.encog.mathutil.IntRange;
import org.encog.ml.MLMethod;
import org.encog.ml.TrainingImplementationType;
import org.encog.ml.data.MLDataPair;
import org.encog.ml.data.MLDataSet;
import org.encog.ml.train.MLTrain;
import org.encog.ml.train.strategy.Strategy;
import org.encog.ml.train.strategy.end.EndTrainingStrategy;
import org.encog.neural.error.ErrorFunction;
import org.encog.neural.error.LinearErrorFunction;
import org.encog.neural.flat.FlatNetwork;
import org.encog.neural.networks.ContainsFlat;
import org.encog.neural.networks.training.LearningRate;
import org.encog.neural.networks.training.Momentum;
import org.encog.neural.networks.training.Train;
import org.encog.neural.networks.training.TrainingError;
import org.encog.neural.networks.training.propagation.TrainingContinuation;
import org.encog.neural.networks.training.propagation.back.Backpropagation;
import org.encog.neural.networks.training.strategy.SmartLearningRate;
import org.encog.neural.networks.training.strategy.SmartMomentum;
import org.encog.util.EncogValidate;
import org.encog.util.EngineArray;
import org.encog.util.concurrency.DetermineWorkload;
import org.encog.util.concurrency.EngineConcurrency;
import org.encog.util.concurrency.MultiThreadable;
import org.encog.util.concurrency.TaskGroup;
import org.encog.util.logging.EncogLogging;
/**
* This class started as a verbatim copy of BackPropagation from the open-source
* Encog framework. It was merged with its super-classes to access protected
* fields without resorting to reflection.
*/
public class TemporalDifferenceLearning implements MLTrain, Momentum,
LearningRate, Train, MultiThreadable {
// New fields for TD(lambda)
private final double lambda;
// end new fields
// BackProp
public static final String LAST_DELTA = "LAST_DELTA";
private double learningRate;
private double momentum;
private double[] lastDelta;
// End BackProp
// Propagation
private FlatNetwork currentFlatNetwork;
private int numThreads;
protected double[] gradients;
private double[] lastGradient;
protected ContainsFlat network;
// private MLDataSet indexable;
private Set<List<MLDataPair>> indexable;
private GradientWorker[] workers;
private double totalError;
protected double lastError;
private Throwable reportedException;
private double[] flatSpot;
private boolean shouldFixFlatSpot;
private ErrorFunction ef = new LinearErrorFunction();
// End Propagation
// BasicTraining
private final List<Strategy> strategies = new ArrayList<Strategy>();
private Set<List<MLDataPair>> training;
private double error;
private int iteration;
private TrainingImplementationType implementationType;
// End BasicTraining
public TemporalDifferenceLearning(final ContainsFlat network,
final Set<List<MLDataPair>> training, double lambda) {
this(network, training, 0, 0, lambda);
addStrategy(new SmartLearningRate());
addStrategy(new SmartMomentum());
}
public TemporalDifferenceLearning(final ContainsFlat network,
Set<List<MLDataPair>> training, final double theLearnRate,
final double theMomentum, double lambda) {
initPropagation(network, training);
// TODO consider how to re-implement validation
// ValidateNetwork.validateMethodToData(network, training);
this.momentum = theMomentum;
this.learningRate = theLearnRate;
this.lastDelta = new double[network.getFlat().getWeights().length];
this.lambda = lambda;
}
private void initPropagation(final ContainsFlat network,
final Set<List<MLDataPair>> training) {
initBasicTraining(TrainingImplementationType.Iterative);
this.network = network;
this.currentFlatNetwork = network.getFlat();
setTraining(training);
this.gradients = new double[this.currentFlatNetwork.getWeights().length];
this.lastGradient = new double[this.currentFlatNetwork.getWeights().length];
this.indexable = training;
this.numThreads = 0;
this.reportedException = null;
this.shouldFixFlatSpot = true;
}
private void initBasicTraining(TrainingImplementationType implementationType) {
this.implementationType = implementationType;
}
// Methods from BackPropagation
@Override
public boolean canContinue() {
return false;
}
public double[] getLastDelta() {
return this.lastDelta;
}
@Override
public double getLearningRate() {
return this.learningRate;
}
@Override
public double getMomentum() {
return this.momentum;
}
public boolean isValidResume(final TrainingContinuation state) {
if (!state.getContents().containsKey(Backpropagation.LAST_DELTA)) {
return false;
}
if (!state.getTrainingType().equals(getClass().getSimpleName())) {
return false;
}
final double[] d = (double[]) state.get(Backpropagation.LAST_DELTA);
return d.length == ((ContainsFlat) getMethod()).getFlat().getWeights().length;
}
@Override
public TrainingContinuation pause() {
final TrainingContinuation result = new TrainingContinuation();
result.setTrainingType(this.getClass().getSimpleName());
result.set(Backpropagation.LAST_DELTA, this.lastDelta);
return result;
}
@Override
public void resume(final TrainingContinuation state) {
if (!isValidResume(state)) {
throw new TrainingError("Invalid training resume data length");
}
this.lastDelta = ((double[]) state.get(Backpropagation.LAST_DELTA));
}
@Override
public void setLearningRate(final double rate) {
this.learningRate = rate;
}
@Override
public void setMomentum(final double m) {
this.momentum = m;
}
public double updateWeight(final double[] gradients,
final double[] lastGradient, final int index) {
final double delta = (gradients[index] * this.learningRate)
+ (this.lastDelta[index] * this.momentum);
this.lastDelta[index] = delta;
System.out.println("Updating weights for connection: " + index
+ " with lambda: " + lambda);
return delta;
}
public void initOthers() {
}
// End methods from BackPropagation
// Methods from Propagation
public void finishTraining() {
basicFinishTraining();
}
public FlatNetwork getCurrentFlatNetwork() {
return this.currentFlatNetwork;
}
public MLMethod getMethod() {
return this.network;
}
public void iteration() {
iteration(1);
}
public void rollIteration() {
this.iteration++;
}
public void iteration(final int count) {
try {
for (int i = 0; i < count; i++) {
preIteration();
rollIteration();
calculateGradients();
if (this.currentFlatNetwork.isLimited()) {
learnLimited();
} else {
learn();
}
this.lastError = this.getError();
for (final GradientWorker worker : this.workers) {
EngineArray.arrayCopy(this.currentFlatNetwork.getWeights(),
0, worker.getWeights(), 0,
this.currentFlatNetwork.getWeights().length);
}
if (this.currentFlatNetwork.getHasContext()) {
copyContexts();
}
if (this.reportedException != null) {
throw (new EncogError(this.reportedException));
}
postIteration();
EncogLogging.log(EncogLogging.LEVEL_INFO,
"Training iteration done, error: " + getError());
}
} catch (final ArrayIndexOutOfBoundsException ex) {
EncogValidate.validateNetworkForTraining(this.network,
getTraining());
throw new EncogError(ex);
}
}
public void setThreadCount(final int numThreads) {
this.numThreads = numThreads;
}
@Override
public int getThreadCount() {
return this.numThreads;
}
public void fixFlatSpot(boolean b) {
this.shouldFixFlatSpot = b;
}
public void setErrorFunction(ErrorFunction ef) {
this.ef = ef;
}
public void calculateGradients() {
if (this.workers == null) {
init();
}
if (this.currentFlatNetwork.getHasContext()) {
this.workers[0].getNetwork().clearContext();
}
this.totalError = 0;
if (this.workers.length > 1) {
final TaskGroup group = EngineConcurrency.getInstance()
.createTaskGroup();
for (final GradientWorker worker : this.workers) {
EngineConcurrency.getInstance().processTask(worker, group);
}
group.waitForComplete();
} else {
this.workers[0].run();
}
this.setError(this.totalError / this.workers.length);
}
/**
* Copy the contexts to keep them consistent with multithreaded training.
*/
private void copyContexts() {
// copy the contexts(layer outputO from each group to the next group
for (int i = 0; i < (this.workers.length - 1); i++) {
final double[] src = this.workers[i].getNetwork().getLayerOutput();
final double[] dst = this.workers[i + 1].getNetwork()
.getLayerOutput();
EngineArray.arrayCopy(src, dst);
}
// copy the contexts from the final group to the real network
EngineArray.arrayCopy(this.workers[this.workers.length - 1]
.getNetwork().getLayerOutput(), this.currentFlatNetwork
.getLayerOutput());
}
private void init() {
// fix flat spot, if needed
this.flatSpot = new double[this.currentFlatNetwork
.getActivationFunctions().length];
if (this.shouldFixFlatSpot) {
for (int i = 0; i < this.currentFlatNetwork
.getActivationFunctions().length; i++) {
final ActivationFunction af = this.currentFlatNetwork
.getActivationFunctions()[i];
if (af instanceof ActivationSigmoid) {
this.flatSpot[i] = 0.1;
} else {
this.flatSpot[i] = 0.0;
}
}
} else {
EngineArray.fill(this.flatSpot, 0.0);
}
// setup workers
final DetermineWorkload determine = new DetermineWorkload(
this.numThreads, (int) this.indexable.size());
// this.numThreads, (int) this.indexable.getRecordCount());
this.workers = new GradientWorker[determine.getThreadCount()];
int index = 0;
// handle CPU
for (final IntRange r : determine.calculateWorkers()) {
this.workers[index++] = new GradientWorker(
this.currentFlatNetwork.clone(), this, new HashSet(
this.indexable), r.getLow(), r.getHigh(),
this.flatSpot, this.ef);
}
initOthers();
}
public void report(final double[] gradients, final double error,
final Throwable ex) {
synchronized (this) {
if (ex == null) {
for (int i = 0; i < gradients.length; i++) {
this.gradients[i] += gradients[i];
}
this.totalError += error;
} else {
this.reportedException = ex;
}
}
}
protected void learn() {
final double[] weights = this.currentFlatNetwork.getWeights();
for (int i = 0; i < this.gradients.length; i++) {
weights[i] += updateWeight(this.gradients, this.lastGradient, i);
this.gradients[i] = 0;
}
}
protected void learnLimited() {
final double limit = this.currentFlatNetwork.getConnectionLimit();
final double[] weights = this.currentFlatNetwork.getWeights();
for (int i = 0; i < this.gradients.length; i++) {
if (Math.abs(weights[i]) < limit) {
weights[i] = 0;
} else {
weights[i] += updateWeight(this.gradients, this.lastGradient, i);
}
this.gradients[i] = 0;
}
}
public double[] getLastGradient() {
return lastGradient;
}
// End methods from Propagation
// Methods from BasicTraining/
public void addStrategy(final Strategy strategy) {
strategy.init(this);
this.strategies.add(strategy);
}
public void basicFinishTraining() {
}
public double getError() {
return this.error;
}
public int getIteration() {
return this.iteration;
}
public List<Strategy> getStrategies() {
return this.strategies;
}
public MLDataSet getTraining() {
throw new UnsupportedOperationException(
"This learning method operates on Set<List<MLData>>, not MLDataSet");
}
public boolean isTrainingDone() {
for (Strategy strategy : this.strategies) {
if (strategy instanceof EndTrainingStrategy) {
EndTrainingStrategy end = (EndTrainingStrategy) strategy;
if (end.shouldStop()) {
return true;
}
}
}
return false;
}
public void postIteration() {
for (final Strategy strategy : this.strategies) {
strategy.postIteration();
}
}
public void preIteration() {
this.iteration++;
for (final Strategy strategy : this.strategies) {
strategy.preIteration();
}
}
public void setError(final double error) {
this.error = error;
}
public void setIteration(final int iteration) {
this.iteration = iteration;
}
public void setTraining(final Set<List<MLDataPair>> training) {
this.training = training;
}
public TrainingImplementationType getImplementationType() {
return this.implementationType;
}
// End Methods from BasicTraining
}

View File

@@ -0,0 +1,112 @@
package net.woodyfolsom.msproj.ann;
import java.util.List;
import java.util.Set;
import net.woodyfolsom.msproj.GameState;
import net.woodyfolsom.msproj.Player;
import org.encog.engine.network.activation.ActivationSigmoid;
import org.encog.ml.data.MLData;
import org.encog.ml.data.MLDataPair;
import org.encog.ml.data.MLDataSet;
import org.encog.ml.train.MLTrain;
import org.encog.neural.networks.BasicNetwork;
import org.encog.neural.networks.layers.BasicLayer;
public class WinFilter extends AbstractNeuralNetFilter implements
NeuralNetFilter {
public WinFilter() {
// create a neural network, without using a factory
BasicNetwork network = new BasicNetwork();
network.addLayer(new BasicLayer(null, false, 2));
network.addLayer(new BasicLayer(new ActivationSigmoid(), true, 4));
network.addLayer(new BasicLayer(new ActivationSigmoid(), true, 2));
network.getStructure().finalizeStructure();
network.reset();
this.neuralNetwork = network;
}
@Override
public double computeValue(MLData input) {
if (input instanceof GameStateMLData) {
double[] idealVector = computeVector(input);
GameState gameState = ((GameStateMLData) input).getGameState();
Player playerToMove = gameState.getPlayerToMove();
if (playerToMove == Player.BLACK) {
return idealVector[0];
} else if (playerToMove == Player.WHITE) {
return idealVector[1];
} else {
throw new RuntimeException("Invalid GameState.playerToMove: "
+ playerToMove);
}
} else {
throw new UnsupportedOperationException(
"This NeuralNetFilter only accepts GameStates as input.");
}
}
@Override
public double[] computeVector(MLData input) {
if (input instanceof GameStateMLData) {
return neuralNetwork.compute(input).getData();
} else {
throw new UnsupportedOperationException(
"This NeuralNetFilter only accepts GameStates as input.");
}
}
@Override
public void learn(MLDataSet trainingData) {
throw new UnsupportedOperationException("This filter learns a Set<List<MLData>>, not an MLDataSet");
}
@Override
public void learn(Set<List<MLDataPair>> trainingSet) {
// train the neural network
final MLTrain train = new TemporalDifferenceLearning(neuralNetwork,
trainingSet, 0.7, 0.8, 0.25);
actualTrainingEpochs = 0;
do {
train.iteration();
System.out.println("Epoch #" + actualTrainingEpochs + " Error:"
+ train.getError());
actualTrainingEpochs++;
} while (train.getError() > 0.01
&& actualTrainingEpochs <= maxTrainingEpochs);
}
@Override
public void reset() {
neuralNetwork.reset();
}
@Override
public void reset(int seed) {
neuralNetwork.reset(seed);
}
@Override
public BasicNetwork getNeuralNetwork() {
// TODO Auto-generated method stub
return null;
}
@Override
public int getInputSize() {
// TODO Auto-generated method stub
return 0;
}
@Override
public int getOutputSize() {
// TODO Auto-generated method stub
return 0;
}
}

View File

@@ -0,0 +1,83 @@
package net.woodyfolsom.msproj.ann;
import java.util.List;
import java.util.Set;
import org.encog.engine.network.activation.ActivationSigmoid;
import org.encog.ml.data.MLData;
import org.encog.ml.data.MLDataPair;
import org.encog.ml.data.MLDataSet;
import org.encog.ml.data.basic.BasicMLDataSet;
import org.encog.ml.train.MLTrain;
import org.encog.neural.networks.BasicNetwork;
import org.encog.neural.networks.layers.BasicLayer;
import org.encog.neural.networks.training.propagation.back.Backpropagation;
/**
* Based on sample code from http://neuroph.sourceforge.net
*
* @author Woody
*
*/
public class XORFilter extends AbstractNeuralNetFilter implements
NeuralNetFilter {
public XORFilter() {
// create a neural network, without using a factory
BasicNetwork network = new BasicNetwork();
network.addLayer(new BasicLayer(null, false, 2));
network.addLayer(new BasicLayer(new ActivationSigmoid(), true, 3));
network.addLayer(new BasicLayer(new ActivationSigmoid(), true, 1));
network.getStructure().finalizeStructure();
network.reset();
this.neuralNetwork = network;
}
@Override
public void learn(MLDataSet trainingSet) {
// train the neural network
final MLTrain train = new Backpropagation(neuralNetwork,
trainingSet, 0.7, 0.8);
actualTrainingEpochs = 0;
do {
train.iteration();
System.out.println("Epoch #" + actualTrainingEpochs + " Error:"
+ train.getError());
actualTrainingEpochs++;
} while (train.getError() > 0.01
&& actualTrainingEpochs <= maxTrainingEpochs);
}
@Override
public double[] computeVector(MLData mlData) {
MLDataSet dataset = new BasicMLDataSet(new double[][] { mlData.getData() },
new double[][] { new double[getOutputSize()] });
MLData output = neuralNetwork.compute(dataset.get(0).getInput());
return output.getData();
}
@Override
public int getInputSize() {
return 2;
}
@Override
public int getOutputSize() {
// TODO Auto-generated method stub
return 1;
}
@Override
public double computeValue(MLData input) {
return computeVector(input)[0];
}
@Override
public void learn(Set<List<MLDataPair>> trainingSet) {
throw new UnsupportedOperationException("This Filter learns an MLDataSet, not a Set<List<MLData>>.");
}
}

View File

@@ -1,42 +0,0 @@
package net.woodyfolsom.msproj.ann;
import org.neuroph.core.NeuralNetwork;
import org.neuroph.core.learning.SupervisedTrainingElement;
import org.neuroph.core.learning.TrainingSet;
import org.neuroph.nnet.MultiLayerPerceptron;
import org.neuroph.util.TransferFunctionType;
/**
* Based on sample code from http://neuroph.sourceforge.net
*
* @author Woody
*
*/
public class XORLearner implements NeuralNetLearner {
private NeuralNetwork neuralNetwork;
public XORLearner() {
reset();
}
@Override
public NeuralNetwork getNeuralNetwork() {
return neuralNetwork;
}
@Override
public void learn(TrainingSet<SupervisedTrainingElement> trainingSet) {
this.neuralNetwork.learn(trainingSet);
}
@Override
public void reset() {
this.neuralNetwork = new MultiLayerPerceptron(
TransferFunctionType.TANH, 2, 3, 1);
}
@Override
public void setNeuralNetwork(NeuralNetwork neuralNetwork) {
this.neuralNetwork = neuralNetwork;
}
}

View File

@@ -5,6 +5,7 @@ import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import java.util.concurrent.atomic.AtomicInteger;
import javax.swing.JButton;
import javax.swing.JFrame;
@@ -14,22 +15,31 @@ import net.woodyfolsom.msproj.Action;
import net.woodyfolsom.msproj.GameConfig;
import net.woodyfolsom.msproj.GameState;
import net.woodyfolsom.msproj.Player;
import net.woodyfolsom.msproj.StandAloneGame;
import net.woodyfolsom.msproj.sfx.SfxPlayer;
public class Goban extends JFrame {
private static final long serialVersionUID = 1L;
private static AtomicInteger openWindows = new AtomicInteger(0);
private GridPanel gridPanel;
private SfxPlayer sfxPlayer;
public Goban(GameConfig gameConfig, Player guiPlayer) {
public Goban(GameConfig gameConfig, Player guiPlayer, String gameName) {
super(gameName);
setLayout(new BorderLayout());
addWindowListener(new WindowAdapter() {
@Override
public void windowClosing(WindowEvent e) {
sfxPlayer.cleanup();
int windowsLeftOpen = openWindows.addAndGet(-1);
if (windowsLeftOpen < 1) {
System.exit(StandAloneGame.EXIT_USER_QUIT);
}
}
});
@@ -42,9 +52,6 @@ public class Goban extends JFrame {
this.gridPanel = new GridPanel(gameConfig, guiPlayer, sfxPlayer);
add(gridPanel,BorderLayout.CENTER);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);
JButton passBtn = new JButton("Pass");
JButton resignBtn = new JButton("Resign");
@@ -67,6 +74,9 @@ public class Goban extends JFrame {
bottomPanel.add(resignBtn);
add(bottomPanel, BorderLayout.SOUTH);
setVisible(true);
openWindows.addAndGet(1);
pack();
}

View File

@@ -229,7 +229,9 @@ public class GridPanel extends JPanel implements MouseListener,
@Override
public void run() {
if (sfxPlayer != null) {
sfxPlayer.play();
}
}}).start();
}

View File

@@ -13,7 +13,7 @@ import net.woodyfolsom.msproj.tree.GameTreeNode;
import net.woodyfolsom.msproj.tree.MonteCarloProperties;
public abstract class MonteCarlo implements Policy {
protected static final int ROLLOUT_DEPTH_LIMIT = 150;
protected static final int ROLLOUT_DEPTH_LIMIT = 250;
protected int numStateEvaluations = 0;
protected Policy movePolicy;

View File

@@ -101,8 +101,8 @@ public class RootParallelization implements Policy {
System.out.println("It won "
+ bestWins + " out of " + bestSims
+ " rollouts among " + totalRollouts
+ " total rollouts (" + totalReward.keySet()
+ " possible actions) from the current state.");
+ " total rollouts (" + totalReward.size()
+ " possible moves evaluated) from the current state.");
return bestAction;
}

View File

@@ -1,86 +0,0 @@
package net.woodyfolsom.msproj.ann;
import java.io.File;
import java.util.Arrays;
import org.junit.AfterClass;
import org.junit.BeforeClass;
import org.junit.Test;
import org.neuroph.core.NeuralNetwork;
import org.neuroph.core.learning.SupervisedTrainingElement;
import org.neuroph.core.learning.TrainingSet;
public class NeuralNetLearnerTest {
private static final String FILENAME = "myMlPerceptron.nnet";
@AfterClass
public static void deleteNewNet() {
File file = new File(FILENAME);
if (file.exists()) {
file.delete();
}
}
@BeforeClass
public static void deleteSavedNet() {
File file = new File(FILENAME);
if (file.exists()) {
file.delete();
}
}
@Test
public void testLearnSaveLoad() {
NeuralNetLearner nnLearner = new XORLearner();
// create training set (logical XOR function)
TrainingSet<SupervisedTrainingElement> trainingSet = new TrainingSet<SupervisedTrainingElement>(
2, 1);
for (int x = 0; x < 1000; x++) {
trainingSet.addElement(new SupervisedTrainingElement(new double[] { 0,
0 }, new double[] { 0 }));
trainingSet.addElement(new SupervisedTrainingElement(new double[] { 0,
1 }, new double[] { 1 }));
trainingSet.addElement(new SupervisedTrainingElement(new double[] { 1,
0 }, new double[] { 1 }));
trainingSet.addElement(new SupervisedTrainingElement(new double[] { 1,
1 }, new double[] { 0 }));
}
nnLearner.learn(trainingSet);
NeuralNetwork nnet = nnLearner.getNeuralNetwork();
TrainingSet<SupervisedTrainingElement> valSet = new TrainingSet<SupervisedTrainingElement>(
2, 1);
valSet.addElement(new SupervisedTrainingElement(new double[] { 0,
0 }, new double[] { 0 }));
valSet.addElement(new SupervisedTrainingElement(new double[] { 0,
1 }, new double[] { 1 }));
valSet.addElement(new SupervisedTrainingElement(new double[] { 1,
0 }, new double[] { 1 }));
valSet.addElement(new SupervisedTrainingElement(new double[] { 1,
1 }, new double[] { 0 }));
System.out.println("Output from eval set (learned network):");
testNetwork(nnet, valSet);
nnet.save(FILENAME);
nnet = NeuralNetwork.load(FILENAME);
System.out.println("Output from eval set (learned network):");
testNetwork(nnet, valSet);
}
private void testNetwork(NeuralNetwork nnet, TrainingSet<SupervisedTrainingElement> trainingSet) {
for (SupervisedTrainingElement trainingElement : trainingSet.elements()) {
nnet.setInput(trainingElement.getInput());
nnet.calculate();
double[] networkOutput = nnet.getOutput();
System.out.print("Input: "
+ Arrays.toString(trainingElement.getInput()));
System.out.println(" Output: " + Arrays.toString(networkOutput));
}
}
}

View File

@@ -1,51 +0,0 @@
package net.woodyfolsom.msproj.ann;
import static org.junit.Assert.assertTrue;
import org.junit.Test;
import org.neuroph.core.NeuralNetwork;
public class PassNetworkTest {
@Test
public void testSavedNetwork1() {
NeuralNetwork passFilter = NeuralNetwork.load("data/networks/Pass1.nn");
passFilter.setInput(0.75,0.25);
passFilter.calculate();
PassData passData = new PassData();
double[] output = passFilter.getOutput();
System.out.println("Output: " + passData.getOutput(output));
assertTrue(output[0] > 0.50);
assertTrue(output[1] < 0.50);
passFilter.setInput(0.25,0.50);
passFilter.calculate();
output = passFilter.getOutput();
System.out.println("Output: " + passData.getOutput(output));
assertTrue(output[0] < 0.50);
assertTrue(output[1] > 0.50);
}
@Test
public void testSavedNetwork2() {
NeuralNetwork passFilter = NeuralNetwork.load("data/networks/Pass2.nn");
passFilter.setInput(0.75,0.25);
passFilter.calculate();
PassData passData = new PassData();
double[] output = passFilter.getOutput();
System.out.println("Output: " + passData.getOutput(output));
assertTrue(output[0] > 0.50);
assertTrue(output[1] < 0.50);
passFilter.setInput(0.45,0.55);
passFilter.calculate();
output = passFilter.getOutput();
System.out.println("Output: " + passData.getOutput(output));
assertTrue(output[0] < 0.50);
assertTrue(output[1] > 0.50);
}
}

View File

@@ -0,0 +1,66 @@
package net.woodyfolsom.msproj.ann;
import java.io.File;
import java.io.FileFilter;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import net.woodyfolsom.msproj.GameRecord;
import net.woodyfolsom.msproj.Referee;
import org.antlr.runtime.RecognitionException;
import org.encog.ml.data.MLData;
import org.encog.ml.data.MLDataPair;
import org.junit.Test;
public class WinFilterTest {
@Test
public void testLearnSaveLoad() throws IOException, RecognitionException {
File[] sgfFiles = new File("data/games/random_vs_random")
.listFiles(new FileFilter() {
@Override
public boolean accept(File pathname) {
return pathname.getName().endsWith(".sgf");
}
});
Set<List<MLDataPair>> trainingData = new HashSet<List<MLDataPair>>();
for (File file : sgfFiles) {
FileInputStream fis = new FileInputStream(file);
GameRecord gameRecord = Referee.replay(fis);
List<MLDataPair> gameData = new ArrayList<MLDataPair>();
for (int i = 0; i <= gameRecord.getNumTurns(); i++) {
gameData.add(new GameStateMLDataPair(gameRecord.getGameState(i)));
}
trainingData.add(gameData);
fis.close();
}
WinFilter winFilter = new WinFilter();
winFilter.learn(trainingData);
for (List<MLDataPair> trainingSequence : trainingData) {
//for (MLDataPair mlDataPair : trainingSequence) {
for (int stateIndex = 0; stateIndex < trainingSequence.size(); stateIndex++) {
if (stateIndex > 0 && stateIndex < trainingSequence.size()-1) {
continue;
}
MLData input = trainingSequence.get(stateIndex).getInput();
System.out.println("Turn " + stateIndex + ": " + input + " => "
+ winFilter.computeValue(input));
}
//}
}
}
}

View File

@@ -0,0 +1,79 @@
package net.woodyfolsom.msproj.ann;
import java.io.File;
import java.io.IOException;
import org.encog.ml.data.MLDataSet;
import org.encog.ml.data.basic.BasicMLDataSet;
import org.junit.AfterClass;
import org.junit.BeforeClass;
import org.junit.Test;
public class XORFilterTest {
private static final String FILENAME = "xorPerceptron.net";
@AfterClass
public static void deleteNewNet() {
File file = new File(FILENAME);
if (file.exists()) {
file.delete();
}
}
@BeforeClass
public static void deleteSavedNet() {
File file = new File(FILENAME);
if (file.exists()) {
file.delete();
}
}
@Test
public void testLearnSaveLoad() throws IOException {
NeuralNetFilter nnLearner = new XORFilter();
System.out.println("Learned network after " + nnLearner.getActualTrainingEpochs() + " training epochs.");
// create training set (logical XOR function)
int size = 1;
double[][] trainingInput = new double[4 * size][];
double[][] trainingOutput = new double[4 * size][];
for (int i = 0; i < size; i++) {
trainingInput[i * 4 + 0] = new double[] { 0, 0 };
trainingInput[i * 4 + 1] = new double[] { 0, 1 };
trainingInput[i * 4 + 2] = new double[] { 1, 0 };
trainingInput[i * 4 + 3] = new double[] { 1, 1 };
trainingOutput[i * 4 + 0] = new double[] { 0 };
trainingOutput[i * 4 + 1] = new double[] { 1 };
trainingOutput[i * 4 + 2] = new double[] { 1 };
trainingOutput[i * 4 + 3] = new double[] { 0 };
}
// create training data
MLDataSet trainingSet = new BasicMLDataSet(trainingInput, trainingOutput);
nnLearner.learn(trainingSet);
double[][] validationSet = new double[4][2];
validationSet[0] = new double[] { 0, 0 };
validationSet[1] = new double[] { 0, 1 };
validationSet[2] = new double[] { 1, 0 };
validationSet[3] = new double[] { 1, 1 };
System.out.println("Output from eval set (learned network, pre-serialization):");
testNetwork(nnLearner, validationSet);
nnLearner.save(FILENAME);
nnLearner.load(FILENAME);
System.out.println("Output from eval set (learned network, post-serialization):");
testNetwork(nnLearner, validationSet);
}
private void testNetwork(NeuralNetFilter nnLearner, double[][] validationSet) {
for (int valIndex = 0; valIndex < validationSet.length; valIndex++) {
DoublePair dp = new DoublePair(validationSet[valIndex][0],validationSet[valIndex][1]);
System.out.println(dp + " => " + nnLearner.computeValue(dp));
}
}
}