Fixed AMAF, SMAF algorithms.

This commit is contained in:
2012-12-02 18:37:51 -05:00
parent d24e7aee97
commit 28dc44b61e
16 changed files with 362 additions and 123 deletions

View File

@@ -1,4 +1,4 @@
PlayerOne=ROOT_PAR
PlayerOne=SMAF
PlayerTwo=RANDOM
GUIDelay=1000 //1 second
BoardSize=9
@@ -7,4 +7,4 @@ NumGames=1 //Games for each color per player
TurnTime=2000 //seconds per player per turn
SpectatorBoardShown=true
WhiteMoveLogged=false
BlackMoveLogged=false
BlackMoveLogged=true

View File

@@ -91,7 +91,6 @@ public class Referee {
while (!gameRecord.isFinished()) {
GameState gameState = gameRecord.getGameState(gameRecord
.getNumTurns());
// System.out.println(gameState);
Player playerToMove = gameRecord.getPlayerToMove();
Policy policy = getPolicy(playerToMove);
@@ -108,6 +107,11 @@ public class Referee {
} else {
System.out.println("Move rejected - try again.");
}
if (policy.isLogging()) {
System.out.println(gameState);
}
}
} catch (Exception ex) {
System.out

View File

@@ -13,6 +13,7 @@ import net.woodyfolsom.msproj.gui.Goban;
import net.woodyfolsom.msproj.policy.HumanGuiInput;
import net.woodyfolsom.msproj.policy.HumanKeyboardInput;
import net.woodyfolsom.msproj.policy.MonteCarloAMAF;
import net.woodyfolsom.msproj.policy.MonteCarloSMAF;
import net.woodyfolsom.msproj.policy.MonteCarloUCT;
import net.woodyfolsom.msproj.policy.Policy;
import net.woodyfolsom.msproj.policy.RandomMovePolicy;
@@ -26,7 +27,7 @@ public class StandAloneGame {
private int gameNo = 0;
enum PLAYER_TYPE {
HUMAN, HUMAN_GUI, ROOT_PAR, UCT, RANDOM, RAVE
HUMAN, HUMAN_GUI, ROOT_PAR, UCT, RANDOM, RAVE, SMAF
};
public static void main(String[] args) throws IOException {
@@ -41,7 +42,8 @@ public class StandAloneGame {
gameSettings.getBoardSize(), gameSettings.getKomi(),
gameSettings.getNumGames(), gameSettings.getTurnTime(),
gameSettings.isSpectatorBoardShown(),
gameSettings.isBlackMoveLogged(), gameSettings.isWhiteMoveLogged());
gameSettings.isBlackMoveLogged(),
gameSettings.isWhiteMoveLogged());
System.out.println("Press <Enter> or CTRL-C to exit");
System.in.read(new byte[80]);
} catch (IOException ioe) {
@@ -64,14 +66,17 @@ public class StandAloneGame {
return PLAYER_TYPE.RANDOM;
} else if ("RAVE".equalsIgnoreCase(playerTypeStr)) {
return PLAYER_TYPE.RAVE;
} else if ("SMAF".equalsIgnoreCase(playerTypeStr)) {
return PLAYER_TYPE.SMAF;
} else {
throw new RuntimeException("Unknown player type: " + playerTypeStr);
}
}
public void playGame(PLAYER_TYPE playerType1, PLAYER_TYPE playerType2,
int size, double komi, int rounds, long turnLength, boolean showSpectatorBoard,
boolean blackMoveLogged, boolean whiteMoveLogged) {
int size, double komi, int rounds, long turnLength,
boolean showSpectatorBoard, boolean blackMoveLogged,
boolean whiteMoveLogged) {
long startTime = System.currentTimeMillis();
@@ -79,28 +84,38 @@ public class StandAloneGame {
gameConfig.setKomi(komi);
Referee referee = new Referee();
referee.setPolicy(Player.BLACK,
getPolicy(playerType1, gameConfig, Player.BLACK, turnLength, blackMoveLogged));
referee.setPolicy(Player.WHITE,
getPolicy(playerType2, gameConfig, Player.WHITE, turnLength, whiteMoveLogged));
referee.setPolicy(
Player.BLACK,
getPolicy(playerType1, gameConfig, Player.BLACK, turnLength,
blackMoveLogged));
referee.setPolicy(
Player.WHITE,
getPolicy(playerType2, gameConfig, Player.WHITE, turnLength,
whiteMoveLogged));
List<GameResult> round1results = new ArrayList<GameResult>();
boolean logGameRecords = rounds <= 50;
for (int round = 0; round < rounds; round++) {
gameNo++;
round1results.add(referee.play(gameConfig, gameNo, showSpectatorBoard, logGameRecords));
round1results.add(referee.play(gameConfig, gameNo,
showSpectatorBoard, logGameRecords));
}
List<GameResult> round2results = new ArrayList<GameResult>();
referee.setPolicy(Player.BLACK,
getPolicy(playerType2, gameConfig, Player.BLACK, turnLength, blackMoveLogged));
referee.setPolicy(Player.WHITE,
getPolicy(playerType1, gameConfig, Player.WHITE, turnLength, whiteMoveLogged));
referee.setPolicy(
Player.BLACK,
getPolicy(playerType2, gameConfig, Player.BLACK, turnLength,
blackMoveLogged));
referee.setPolicy(
Player.WHITE,
getPolicy(playerType1, gameConfig, Player.WHITE, turnLength,
whiteMoveLogged));
for (int round = 0; round < rounds; round++) {
gameNo++;
round2results.add(referee.play(gameConfig, gameNo, showSpectatorBoard, logGameRecords));
round2results.add(referee.play(gameConfig, gameNo,
showSpectatorBoard, logGameRecords));
}
long endTime = System.currentTimeMillis();
@@ -113,13 +128,14 @@ public class StandAloneGame {
try {
if (!logGameRecords) {
System.out.println("Each player is set to play more than 50 rounds as each color; omitting individual game .sgf log file output.");
System.out
.println("Each player is set to play more than 50 rounds as each color; omitting individual game .sgf log file output.");
}
logResults(writer, round1results, playerType1.toString(),
playerType2.toString());
playerType2.toString());
logResults(writer, round2results, playerType2.toString(),
playerType1.toString());
playerType1.toString());
writer.write("Elapsed Time: " + (endTime - startTime) / 1000.0
+ " seconds.");
System.out.println("Game tournament saved as "
@@ -157,25 +173,38 @@ public class StandAloneGame {
private Policy getPolicy(PLAYER_TYPE playerType, GameConfig gameConfig,
Player player, long turnLength, boolean moveLogged) {
Policy policy;
switch (playerType) {
case HUMAN:
return new HumanKeyboardInput();
policy = new HumanKeyboardInput();
break;
case HUMAN_GUI:
return new HumanGuiInput(new Goban(gameConfig, player,""));
policy = new HumanGuiInput(new Goban(gameConfig, player, ""));
break;
case ROOT_PAR:
return new RootParallelization(4, turnLength);
policy = new RootParallelization(4, turnLength);
break;
case UCT:
return new MonteCarloUCT(new RandomMovePolicy(), turnLength);
policy = new MonteCarloUCT(new RandomMovePolicy(), turnLength);
break;
case SMAF:
policy = new MonteCarloSMAF(new RandomMovePolicy(), turnLength, 0);
break;
case RANDOM:
RandomMovePolicy randomMovePolicy = new RandomMovePolicy();
randomMovePolicy.setLogging(moveLogged);
return randomMovePolicy;
policy = new RandomMovePolicy();
break;
case RAVE:
return new MonteCarloAMAF(new RandomMovePolicy(), turnLength);
policy = new MonteCarloAMAF(new RandomMovePolicy(), turnLength);
break;
default:
throw new IllegalArgumentException("Invalid PLAYER_TYPE: "
+ playerType);
}
policy.setLogging(moveLogged);
return policy;
}
}

View File

@@ -1,6 +1,9 @@
package net.woodyfolsom.msproj.ann;
import java.io.FileNotFoundException;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
@@ -16,66 +19,99 @@ import net.woodyfolsom.msproj.tictactoe.State;
public class TTTFilterTrainer { // implements epsilon-greedy trainer? online
// version of NeuralNetFilter
public static void main(String[] args) throws FileNotFoundException {
double alpha = 0.15;
double lambda = .95;
int maxGames = 1000;
private boolean training = true;
public static void main(String[] args) throws IOException {
double alpha = 0.50;
double lambda = 0.90;
int maxGames = 100000;
new TTTFilterTrainer().trainNetwork(alpha, lambda, maxGames);
}
public void trainNetwork(double alpha, double lambda, int maxGames)
throws FileNotFoundException {
throws IOException {
FeedforwardNetwork neuralNetwork = new MultiLayerPerceptron(true, 9, 6,
1);
neuralNetwork.setName("TicTacToe");
neuralNetwork.initWeights();
TrainingMethod trainer = new TemporalDifference(alpha, lambda);
FeedforwardNetwork neuralNetwork;
if (training) {
neuralNetwork = new MultiLayerPerceptron(true, 9, 9, 1);
neuralNetwork.setName("TicTacToe");
neuralNetwork.initWeights();
TrainingMethod trainer = new TemporalDifference(alpha, lambda);
System.out.println("Playing untrained games.");
for (int i = 0; i < 10; i++) {
System.out.println("" + (i + 1) + ". "
+ playOptimal(neuralNetwork).getResult());
}
System.out.println("Learning from " + maxGames
+ " games of random self-play");
int gamesPlayed = 0;
List<RESULT> results = new ArrayList<RESULT>();
do {
GameRecord gameRecord = playEpsilonGreedy(0.90, neuralNetwork,
trainer);
System.out.println("Winner: " + gameRecord.getResult());
gamesPlayed++;
results.add(gameRecord.getResult());
} while (gamesPlayed < maxGames);
System.out.println("Learned network after " + maxGames
+ " training games.");
for (int i = 0; i < results.size(); i++) {
if (i % 10 == 0) {
System.out.println("" + (i + 1) + ". " + results.get(i));
System.out.println("Playing untrained games.");
for (int i = 0; i < 10; i++) {
System.out.println("" + (i + 1) + ". "
+ playOptimal(neuralNetwork).getResult());
}
System.out.println("Learning from " + maxGames
+ " games of random self-play");
int gamesPlayed = 0;
List<RESULT> results = new ArrayList<RESULT>();
do {
GameRecord gameRecord = playEpsilonGreedy(0.50, neuralNetwork,
trainer);
System.out.println("Winner: " + gameRecord.getResult());
gamesPlayed++;
results.add(gameRecord.getResult());
} while (gamesPlayed < maxGames);
System.out.println("Results of every 10th training game:");
for (int i = 0; i < results.size(); i++) {
if (i % 10 == 0) {
System.out.println("" + (i + 1) + ". " + results.get(i));
}
}
System.out.println("Learned network after " + maxGames
+ " training games.");
} else {
System.out.println("Loading TicTacToe network from file.");
neuralNetwork = new MultiLayerPerceptron();
FileInputStream fis = new FileInputStream(new File("ttt.net"));
if (!new MultiLayerPerceptron().load(fis)) {
System.out.println("Error loading ttt.net from file.");
return;
}
fis.close();
}
evalTestCases(neuralNetwork);
System.out.println("Playing optimal games.");
List<RESULT> gameResults = new ArrayList<RESULT>();
for (int i = 0; i < 10; i++) {
System.out.println("" + (i + 1) + ". "
+ playOptimal(neuralNetwork).getResult());
gameResults.add(playOptimal(neuralNetwork).getResult());
}
/*
* File output = new File("ttt.net");
*
* FileOutputStream fos = new FileOutputStream(output);
*
* neuralNetwork.save(fos);
*/
boolean suboptimalPlay = false;
System.out.println("Optimal game summary: ");
for (int i = 0; i < gameResults.size(); i++) {
RESULT result = gameResults.get(i);
System.out.println("" + (i + 1) + ". " + result);
if (result != RESULT.X_WINS) {
suboptimalPlay = true;
}
}
File output = new File("ttt.net");
FileOutputStream fos = new FileOutputStream(output);
neuralNetwork.save(fos);
System.out.println("Playing optimal vs random games.");
for (int i = 0; i < 10; i++) {
System.out.println("" + (i + 1) + ". "
+ playOptimalVsRandom(neuralNetwork).getResult());
}
if (suboptimalPlay) {
System.out.println("Suboptimal play detected!");
}
}
private void evalTestCases(FeedforwardNetwork neuralNetwork) {
@@ -115,6 +151,32 @@ public class TTTFilterTrainer { // implements epsilon-greedy trainer? online
testNetwork(neuralNetwork, validationSet, inputNames, outputNames);
}
private GameRecord playOptimalVsRandom(FeedforwardNetwork neuralNetwork) {
GameRecord gameRecord = new GameRecord();
Policy neuralNetPolicy = new NeuralNetPolicy(neuralNetwork);
Policy randomPolicy = new RandomPolicy();
State state = gameRecord.getState();
Policy[] policies = new Policy[] { neuralNetPolicy, randomPolicy };
int turnNo = 0;
do {
Action action;
State nextState;
action = policies[turnNo % 2].getAction(gameRecord.getState());
nextState = gameRecord.apply(action);
System.out.println("Action " + action + " selected by policy "
+ policies[turnNo % 2].getName());
System.out.println("Next board state: " + nextState);
state = nextState;
turnNo++;
} while (!state.isTerminal());
return gameRecord;
}
private GameRecord playOptimal(FeedforwardNetwork neuralNetwork) {
GameRecord gameRecord = new GameRecord();
@@ -122,8 +184,6 @@ public class TTTFilterTrainer { // implements epsilon-greedy trainer? online
State state = gameRecord.getState();
System.out.println("Playing optimal game:");
do {
Action action;
State nextState;
@@ -131,14 +191,12 @@ public class TTTFilterTrainer { // implements epsilon-greedy trainer? online
action = neuralNetPolicy.getAction(gameRecord.getState());
nextState = gameRecord.apply(action);
System.out.println("Action " + action + " selected by policy " +
neuralNetPolicy.getName());
System.out.println("Action " + action + " selected by policy "
+ neuralNetPolicy.getName());
System.out.println("Next board state: " + nextState);
state = nextState;
} while (!state.isTerminal());
// finally, reinforce the actual reward
return gameRecord;
}
@@ -196,7 +254,7 @@ public class TTTFilterTrainer { // implements epsilon-greedy trainer? online
for (int valIndex = 0; valIndex < validationSet.length; valIndex++) {
NNDataPair dp = new NNDataPair(new NNData(inputNames,
validationSet[valIndex]), new NNData(outputNames,
new double[] {0.0}));
new double[] { 0.0 }));
System.out.println(dp + " => " + neuralNetwork.compute(dp));
}
}

View File

@@ -4,7 +4,7 @@ import java.util.List;
public class TemporalDifference extends TrainingMethod {
private final double alpha;
private final double gamma = 1.0;
// private final double gamma = 1.0;
private final double lambda;
public TemporalDifference(double alpha, double lambda) {
@@ -81,23 +81,27 @@ public class TemporalDifference extends TrainingMethod {
}
}
private void updateWeights(FeedforwardNetwork neuralNetwork, double predictionError) {
private void updateWeights(FeedforwardNetwork neuralNetwork,
double predictionError) {
for (Connection connection : neuralNetwork.getConnections()) {
/*Neuron srcNeuron = neuralNetwork.getNeuron(connection.getSrc());
Neuron destNeuron = neuralNetwork.getNeuron(connection.getDest());
double delta = alpha * srcNeuron.getOutput()
* destNeuron.getGradient() * predictionError + connection.getTrace() * lambda;
// TODO allow for momentum
// double lastDelta = connection.getLastDelta();
connection.addDelta(delta);*/
/*
* Neuron srcNeuron = neuralNetwork.getNeuron(connection.getSrc());
* Neuron destNeuron =
* neuralNetwork.getNeuron(connection.getDest());
*
* double delta = alpha * srcNeuron.getOutput()
* destNeuron.getGradient() * predictionError +
* connection.getTrace() * lambda;
*
* // TODO allow for momentum // double lastDelta =
* connection.getLastDelta(); connection.addDelta(delta);
*/
Neuron srcNeuron = neuralNetwork.getNeuron(connection.getSrc());
Neuron destNeuron = neuralNetwork.getNeuron(connection.getDest());
double delta = alpha * srcNeuron.getOutput()
* destNeuron.getGradient() + connection.getTrace() * lambda;
//TODO allow for momentum
//double lastDelta = connection.getLastDelta();
// TODO allow for momentum
// double lastDelta = connection.getLastDelta();
connection.addDelta(delta);
}
}
@@ -117,23 +121,23 @@ public class TemporalDifference extends TrainingMethod {
@Override
protected void iteratePattern(FeedforwardNetwork neuralNetwork,
NNDataPair statePair, NNData nextReward) {
//System.out.println("Learningrate: " + alpha);
// System.out.println("Learningrate: " + alpha);
zeroGradients(neuralNetwork);
//System.out.println("Training with: " + statePair.getInput());
// System.out.println("Training with: " + statePair.getInput());
NNData ideal = nextReward;
NNData actual = neuralNetwork.compute(statePair);
//System.out.println("Updating weights. Ideal Output: " + ideal);
//System.out.println("Actual Output: " + actual);
// System.out.println("Updating weights. Ideal Output: " + ideal);
// System.out.println("Actual Output: " + actual);
// backpropagate the gradients w.r.t. output error
backPropagate(neuralNetwork, ideal);
double predictionError = statePair.getIdeal().getValues()[0] // reward_t
+ actual.getValues()[0] - nextReward.getValues()[0];
+ actual.getValues()[0] - nextReward.getValues()[0];
updateWeights(neuralNetwork, predictionError);
}

View File

@@ -16,6 +16,15 @@ public class AlphaBeta implements Policy {
private final ValidMoveGenerator validMoveGenerator = new ValidMoveGenerator();
private boolean logging = false;
public boolean isLogging() {
return logging;
}
public void setLogging(boolean logging) {
this.logging = logging;
}
private int lookAhead;
private int numStateEvaluations = 0;

View File

@@ -9,6 +9,15 @@ import net.woodyfolsom.msproj.Player;
import net.woodyfolsom.msproj.gui.Goban;
public class HumanGuiInput implements Policy {
private boolean logging;
public boolean isLogging() {
return logging;
}
public void setLogging(boolean logging) {
this.logging = logging;
}
private Goban goban;
public HumanGuiInput(Goban goban) {

View File

@@ -9,6 +9,15 @@ import net.woodyfolsom.msproj.GameState;
import net.woodyfolsom.msproj.Player;
public class HumanKeyboardInput implements Policy {
private boolean logging = false;
public boolean isLogging() {
return logging;
}
public void setLogging(boolean logging) {
this.logging = logging;
}
@Override
public Action getAction(GameConfig gameConfig, GameState gameState,

View File

@@ -16,6 +16,15 @@ public class Minimax implements Policy {
private final ValidMoveGenerator validMoveGenerator = new ValidMoveGenerator();
private boolean logging = false;
public boolean isLogging() {
return logging;
}
public void setLogging(boolean logging) {
this.logging = logging;
}
private int lookAhead;
private int numStateEvaluations = 0;

View File

@@ -15,6 +15,15 @@ import net.woodyfolsom.msproj.tree.MonteCarloProperties;
public abstract class MonteCarlo implements Policy {
protected static final int ROLLOUT_DEPTH_LIMIT = 250;
private boolean logging = false;
public boolean isLogging() {
return logging;
}
public void setLogging(boolean logging) {
this.logging = logging;
}
protected int numStateEvaluations = 0;
protected Policy movePolicy;

View File

@@ -63,6 +63,43 @@ public class MonteCarloAMAF extends MonteCarloUCT {
rootGameState, new AMAFProperties());
}
@Override
public Action getBestAction(GameTreeNode<MonteCarloProperties> node) {
Action bestAction = Action.NONE;
double bestScore = Double.NEGATIVE_INFINITY;
GameTreeNode<MonteCarloProperties> bestChild = null;
for (Action action : node.getActions()) {
GameTreeNode<MonteCarloProperties> childNode = node
.getChild(action);
AMAFProperties childProps = (AMAFProperties)childNode.getProperties();
double childScore = childProps.getAmafWins() / (double)childProps.getAmafVisits();
if (childScore >= bestScore) {
bestScore = childScore;
bestAction = action;
bestChild = childNode;
}
}
if (bestAction == Action.NONE) {
System.out
.println("MonteCarloUCT failed - no actions were found for the current game state (not even PASS).");
} else {
System.out.println("Action " + bestAction + " selected for "
+ node.getGameState().getPlayerToMove()
+ " with simulated win ratio of "
+ (bestScore * 100.0 + "%"));
System.out.println("It was visited "
+ bestChild.getProperties().getVisits() + " times out of "
+ node.getProperties().getVisits() + " rollouts among "
+ node.getNumChildren()
+ " valid actions from the current state.");
}
return bestAction;
}
@Override
protected double getNodeScore(GameTreeNode<MonteCarloProperties> gameTreeNode) {
//double nodeVisits = gameTreeNode.getParent().getProperties().getVisits();
@@ -72,16 +109,8 @@ public class MonteCarloAMAF extends MonteCarloUCT {
if (gameTreeNode.getGameState().isTerminal()) {
nodeScore = 0.0;
} else {
/*
MonteCarloProperties properties = gameTreeNode.getProperties();
nodeScore = (double) (properties.getWins() / properties
.getVisits())
+ (TUNING_CONSTANT * Math.sqrt(Math.log(nodeVisits)
/ gameTreeNode.getProperties().getVisits()));
*
*/
AMAFProperties properties = (AMAFProperties) gameTreeNode.getProperties();
nodeScore = (double) (properties.getAmafWins() / properties
nodeScore = (properties.getAmafWins() / (double) properties
.getAmafVisits())
+ (TUNING_CONSTANT * Math.sqrt(Math.log(parentAmafVisits)
/ properties.getAmafVisits()));

View File

@@ -0,0 +1,59 @@
package net.woodyfolsom.msproj.policy;
import java.util.List;
import net.woodyfolsom.msproj.Action;
import net.woodyfolsom.msproj.Player;
import net.woodyfolsom.msproj.tree.AMAFProperties;
import net.woodyfolsom.msproj.tree.GameTreeNode;
import net.woodyfolsom.msproj.tree.MonteCarloProperties;
public class MonteCarloSMAF extends MonteCarloAMAF {
private int horizon;
public MonteCarloSMAF(Policy movePolicy, long searchTimeLimit, int horizon) {
super(movePolicy, searchTimeLimit);
this.horizon = horizon;
}
@Override
public void update(GameTreeNode<MonteCarloProperties> node, Rollout rollout) {
GameTreeNode<MonteCarloProperties> currentNode = node;
//List<Action> subTreeActions = new ArrayList<Action>(rollout.getPlayout());
List<Action> playout = rollout.getPlayout();
int reward = rollout.getReward();
while (currentNode != null) {
AMAFProperties nodeProperties = (AMAFProperties)currentNode.getProperties();
//Always update props for the current node
nodeProperties.setWins(nodeProperties.getWins() + reward);
nodeProperties.setVisits(nodeProperties.getVisits() + 1);
nodeProperties.setAmafWins(nodeProperties.getAmafWins() + reward);
nodeProperties.setAmafVisits(nodeProperties.getAmafVisits() + 1);
GameTreeNode<MonteCarloProperties> parentNode = currentNode.getParent();
if (parentNode != null) {
Player playerToMove = parentNode.getGameState().getPlayerToMove();
for (Action actionFromParent : parentNode.getActions()) {
if (playout.subList(0, Math.max(horizon,playout.size())).contains(actionFromParent)) {
GameTreeNode<MonteCarloProperties> subTreeChild = parentNode.getChild(actionFromParent);
//Don't count AMAF properties for the current node twice
if (subTreeChild == currentNode) {
continue;
}
AMAFProperties siblingProperties = (AMAFProperties)subTreeChild.getProperties();
//Only update AMAF properties if the sibling is reached by the same action with the same player to move
if (rollout.hasPlay(playerToMove,actionFromParent)) {
siblingProperties.setAmafWins(siblingProperties.getAmafWins() + reward);
siblingProperties.setAmafVisits(siblingProperties.getAmafVisits() + 1);
}
}
}
}
currentNode = currentNode.getParent();
}
}
}

View File

@@ -90,11 +90,8 @@ public class MonteCarloUCT extends MonteCarlo {
GameTreeNode<MonteCarloProperties> childNode = node
.getChild(action);
//MonteCarloProperties properties = childNode.getProperties();
//double childScore = (double) properties.getWins()
// / properties.getVisits();
double childScore = getNodeScore(childNode);
MonteCarloProperties childProps = childNode.getProperties();
double childScore = childProps.getWins() / (double)childProps.getVisits();
if (childScore >= bestScore) {
bestScore = childScore;

View File

@@ -17,4 +17,8 @@ public interface Policy {
public int getNumStateEvaluations();
public void setState(GameState gameState);
boolean isLogging();
void setLogging(boolean logging);
}

View File

@@ -110,6 +110,7 @@ public class RandomMovePolicy implements Policy, ActionGenerator {
return randomAction;
}
@Override
public boolean isLogging() {
return logging;
}

View File

@@ -13,7 +13,16 @@ import net.woodyfolsom.msproj.Player;
import net.woodyfolsom.msproj.tree.MonteCarloProperties;
public class RootParallelization implements Policy {
private boolean logging = false;
private int numTrees = 1;
public boolean isLogging() {
return logging;
}
public void setLogging(boolean logging) {
this.logging = logging;
}
private long timeLimit = 1000L;
public RootParallelization(int numTrees, long timeLimit) {